
2- Application Level Protocols
HTTP 0.9/1.0/1.1/2

Part A

OVERVIEW

HTTP (HyperText Transfer Protocol)

• Basis for fetching Web pages
• HTTP is the page fetch protocol

– HTTP is the page contents

CSE 461 University of Washington 3

request

Network

Web Protocol Context
• HTTP is a request/response protocol for

fetching Web resources
• Runs over TCP

– typically port 80
• A more secure version, HTTPS typically on port 443

– Part of browser/server app

TCP

IP

802.11

browser

HTTP

TCP

IP

802.11

server

HTTP
request

response

HTML Web Page Content

CSE 461 University of Washington 5

HTTP request

HTTP response

Page composed of
multiple elements
fetched as HTTP

transfers

HTTP Protocol
• Today, HTTP transports typed data

– TCP transports bytes

• Like DNS, HTTP is a request-response protocol
– Client sends request message, server sends response

message

• HTTP messages have a header and a payload section
• Header is encoded as text

– payload is typed: e.g., text vs. images

• Header is extensible
– Can add to it without breaking backward compatibility

CSE 461 University of Washington 6

Static vs Dynamic Web pages
• The URL is a logical name

– Doesn’t have to correspond to a file
• Static web page is a file contents, e.g., image
• Dynamic web page is the result of program execution

– E.g., Javascript on client, PHP on server, or both

CSE 461 University of Washington 7

Fetching a Web Page

• Browser starts with the page URL:
http://en.wikipedia.org/wiki/Vegemite

•

• Browser steps:
– Resolve the server name to an IP address (DNS)
– Set up a TCP connection to the server (port 80)
– Send HTTP request for the page
– Wait for and then read HTTP response
– (Assuming no errors) Process response data (HTML) and render page
– Clean up any idle TCP connections

CSE 461 University of Washington 8

Protocol Page on serverServer

HTTP 0.9

HTTP 0.9
• Intended as allow anonymous fetch of files from remote

machines
– think scp, but you don’t need an account on the remote

machine
• Original idea was that anyone could make content

available to everyone
• Invented by physicists...
• Request-response protocol

– Request: “GET /path/to/file\r\n”
– Response: the file’s contents

HTTP 0.9 Protocol Decisions: Framing

• Q: How does server know when new request starts?
• when the request ends?

– How does client know when the response ends?

• A: Transmit HTTP over TCP and misuse TCP events
– TCP is connection-based
– There is a “connected” event that occurs when the connection is first

established
– There is a “connection gone” event that occurs when the connection is

closed

– Use connected to tell the server there is a new request
– Use gone to tell the client that’s the end of the server’s response

• Why is this a bad idea?

HTTP 0.9 Protocol Decisions: Errors
• Q: How does server indicate an error to the client?

• A: The server has only two options
– Send data back, in which case that data is taken to be the file’s contents
– Send nothing back

• Getting nothing back could mean:
– Server crashed
– Server is up but there is no internet connection between you and it
– File is empty
– The file doesn’t exist
– The request line you sent was bad
– File exists but I’m having a problem reading it
– File exists but is larger than the local policy limiting transfer sizes
– ...

HTTP 0.9: Issues
• The original protocol was very simple, but...
• It quickly had function issues

– the peer protocol implementations need to be able to talk with
each other (independently of the apps using the protocol)

• e.g., there might be multiple ways to encode data

• The intended application quickly matured
– Pages became assemblies of components, not just single files

• An ever growing number of HTTP transfers per page

• The protocol quickly developed performance issues
– establishing a TCP connection is slow
– establishing a lot of TCP connections is even slower

HTTP 0.9/1.0/1.1/2.0

• HTTP 0.9: 1991
– Function

• HTTP 1.0: 1995
– Function

• HTTP 1.1: 1996
– Performance

• HTTP 2.0: 2015
– Performance

FUNCTION: HTTP 1.0 AND BEYOND

You Need a Header

• HTTP 0.9 requests were just a command line
• Responses were just data
• There is no way for the two sides of the

communication to talk to each other
• There is no way to indicate an error condition
• Every protocol needs a header

HTTP Message Format

Special command line\r\n
Tag: value\r\n
Tag: value\r\n
...
Tag: value\r\n
\r\n
<payload>

• Header is encoded as text
• Header is a sequence of lines
• Each line ends with \r\n
• Header ends with \r\n\r\n

• Payload length is given by either:
• Content-length tag in header
• Payload is encoded in a format

that uses a sentinel (special value
that marks the end)

Try It Yourself: View HTTP Request

• $ nc –l 8080
Opens a TCP socket on port 8080 and waits for an
incoming connection

• Point a browser running on the same machine to
http://localhost:8080/first/second/third.html

• The output in the nc window is the HTTP request
sent by the browser

Example HTTP Request
$ nc -l 8080
GET /first/second/third.html HTTP/1.1
Host: localhost:8080
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36
Upgrade-Insecure-Requests: 1
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/a
png,*/*;q=0.8
DNT: 1
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.8

What the browser sent

Try It Yourself: HTTP Response
$ nc neverssl.com 80
GET / HTTP/1.0
Host: neverssl.com

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 2536
Connection: keep-alive
Date: Sun, 07 Apr 2019 21:17:55 GMT
Last-Modified: Thu, 14 Jun 2018 00:16:40 GMT
ETag: "e8bb9152091d61caa9d69fed8c4aebc6"
Accept-Ranges: bytes
Server: AmazonS3
Vary: Accept-Encoding
Age: 65787
X-Cache: Hit from cloudfront
Via: 1.1 08f323eee70ddda7af34d5feb414ce27.cloudfront.net (CloudFront)
X-Amz-Cf-Id: HQC3zTXMz6vVxWhb9SHJ7MtHZXQzwz4OrSYRKKSF7c0G8Y0m2u_e_w==

<html>
<head>

<title>NeverSSL - helping you get online</title>.... <2536 bytes of data in all>

request

response

HTTP Protocol

Commands used in the request

Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct

HTTP Protocol

Result codes returned with the response

CSE 461 University of Washington 22

Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!

PERFORMANCE

Performance Measure: PLT
(Page Load Time)

• PLT is the key measure of web performance
– From click until user sees page

• PLT depends on many factors
– Structure of page/content
– HTTP (and TCP!) protocol
– Network RTT and bandwidth

CSE 461 University of Washington 24

v.

Page Load Time Impact

From How One Second Could Cost Amazon $1.6 Billion In Sales, March 15, 2012
https://www.fastcompanycom/1825005/how-one-second-could-cost-amazon-16-billion-sales

CSE 461 University of Washington 27

HTTP 1.0 (1996)

• HTTP/1.0 uses one TCP connection
to fetch one web resource
– Made HTTP very easy to build
– But gave fairly poor PLT …

• Framing?
– Length?
– Sentinel?

CSE 461 University of Washington 28

HTTP 1.0

• Many reasons why PLT is larger than
necessary
– Sequential request/responses, even when to

different servers
• This is a browser implementation issue, rather than a

protocol issue

– Multiple TCP connection setups to the same
server

Reducing PLT: Parallel Connections

• One simple way to reduce PLT
– Browser runs multiple (8, say) HTTP instances in

parallel
– Server is unchanged; already handled concurrent

requests for many clients

• How does this help?
– Single HTTP wasn’t using network much …
– So parallel connections aren’t slowed much
– Reduces delay to completion of last fetch

CSE 461 University of Washington 29

HTTP 1.1: PERSISTENT
CONNECTIONS

Persistent Connections

• May fetch many resources from one server
– Fetching in parallel requires opening a new TCP connection

for each
– Opening a TCP connection involves messages back and

forth that result in more than a round-trip delay

• Alternative: persistent connections
– Make a TCP connection to a server
– Don’t close it when you get the response
– Instead, use it to send the next request to that server
– Lower overhead is better for both clients and servers

CSE 461 University of Washington 31

Connection Use Strategies

CSE 461 University of Washington 32

One request per
connection

Sequential
requests per
connection

Pipelined
requests per
connection

Persistent Connections: Framing

• Before persistent connections, a request started with
a connection and ended when the connection was
closed
– That’s framing

• With persistent connections, how are requests and
responses framed?
– Enforce use of content-length header field?

• What if content is dynamically generated?

– If not that, then what?

Can We Further Reduce PLT?

CSE 461 University of Washington 34

One request per
connection

Sequential
requests per
connection

Pipelined
requests per
connection

Persistent Connections: Pipelining

• If we pipeline HTTP requests on a single TCP connection,
how do we match responses to requests?

• Requests don’t have names
• Can we use ordering

– I.e., responses must be provided in same order requests were
received

• In theory we could
– In practice, this is a substantial performance hit to the server

• In summary, while some pipelining could in theory be
done, it wasn’t

	2- Application Level Protocols�HTTP 0.9/1.0/1.1/2
	Overview
	HTTP (HyperText Transfer Protocol)
	Web Protocol Context
	HTML Web Page Content
	HTTP Protocol
	Static vs Dynamic Web pages
	Fetching a Web Page
	HTTP 0.9
	HTTP 0.9
	HTTP 0.9 Protocol Decisions: Framing
	HTTP 0.9 Protocol Decisions: Errors
	HTTP 0.9: Issues
	HTTP 0.9/1.0/1.1/2.0
	function: HTTP 1.0 and beyond
	You Need a Header
	HTTP Message Format
	Try It Yourself: View HTTP Request
	Example HTTP Request
	Try It Yourself: HTTP Response
	HTTP Protocol
	HTTP Protocol
	Performance
	Performance Measure: PLT �(Page Load Time)
	Slide Number 25
	Page Load Time Impact
	HTTP 1.0 (1996)
	HTTP 1.0
	Reducing PLT: Parallel Connections
	HTTP 1.1: Persistent connections
	Persistent Connections
	Connection Use Strategies
	Persistent Connections: Framing
	Can We Further Reduce PLT?
	Persistent Connections: Pipelining

