
2- Application Level Protocols
HTTP 0.9/1.0/1.1/2

Part A



OVERVIEW



HTTP (HyperText Transfer Protocol)

• Basis for fetching Web pages
• HTTP is the page fetch protocol

– HTTP is the page contents
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Web Protocol Context
• HTTP is a request/response protocol for 

fetching Web resources
• Runs over TCP

– typically port 80
• A more secure version, HTTPS typically on port 443

– Part of browser/server app
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HTML Web Page Content 
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HTTP request

HTTP response
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multiple elements 
fetched as HTTP 

transfers



HTTP Protocol
• Today, HTTP transports typed data

– TCP transports bytes

• Like DNS, HTTP is a request-response protocol
– Client sends request message, server sends response 

message

• HTTP messages have a header and a payload section
• Header is encoded as text

– payload is typed:  e.g., text vs. images

• Header is extensible
– Can add to it without breaking backward compatibility
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Static vs Dynamic Web pages
• The URL is a logical name

– Doesn’t have to correspond to a file
• Static web page is a file contents, e.g., image
• Dynamic web page is the result of program execution

– E.g., Javascript on client, PHP on server, or both 
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Fetching a Web Page

• Browser starts with the page URL:
http://en.wikipedia.org/wiki/Vegemite

•

• Browser steps:
– Resolve the server name to an IP address (DNS)
– Set up a TCP connection to the server (port 80)
– Send HTTP request for the page
– Wait for and then read HTTP response
– (Assuming no errors) Process response data (HTML) and render page
– Clean up any idle TCP connections
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HTTP 0.9



HTTP 0.9
• Intended as allow anonymous fetch of files from remote 

machines
– think scp, but you don’t need an account on the remote 

machine
• Original idea was that anyone could make content 

available to everyone
• Invented by physicists...
• Request-response protocol

– Request: “GET /path/to/file\r\n”
– Response: the file’s contents



HTTP 0.9 Protocol Decisions: Framing

• Q: How does server know when new request starts?
• when the request ends?

– How does client know when the response ends?

• A: Transmit HTTP over TCP and misuse TCP events
– TCP is connection-based
– There is a “connected” event that occurs when the connection is first 

established
– There is a “connection gone” event that occurs when the connection is 

closed

– Use connected to tell the server there is a new request
– Use gone to tell the client that’s the end of the server’s response 

• Why is this a bad idea?



HTTP 0.9 Protocol Decisions: Errors
• Q: How does server indicate an error to the client?

• A: The server has only two options
– Send data back, in which case that data is taken to be the file’s contents
– Send nothing back

• Getting nothing back could mean:
– Server crashed
– Server is up but there is no internet connection between you and it
– File is empty
– The file doesn’t exist
– The request line you sent was bad
– File exists but I’m having a problem reading it
– File exists but is larger than the local policy limiting transfer sizes
– ...



HTTP 0.9: Issues
• The original protocol was very simple, but...
• It quickly had function issues

– the peer protocol implementations need to be able to talk with 
each other (independently of the apps using the protocol)

• e.g., there might be multiple ways to encode data

• The intended application quickly matured
– Pages became assemblies of components, not just single files

• An ever growing number of HTTP transfers per page

• The protocol quickly developed performance issues
– establishing a TCP connection is slow
– establishing a lot of TCP connections is even slower



HTTP 0.9/1.0/1.1/2.0

• HTTP 0.9:  1991
– Function

• HTTP 1.0:  1995
– Function

• HTTP 1.1:  1996
– Performance

• HTTP 2.0:   2015
– Performance



FUNCTION: HTTP 1.0 AND BEYOND



You Need a Header

• HTTP 0.9 requests were just a command line
• Responses were just data
• There is no way for the two sides of the 

communication to  talk to each other
• There is no way to indicate an error condition
• Every protocol needs a header



HTTP Message Format

Special command line\r\n
Tag: value\r\n
Tag: value\r\n
...
Tag: value\r\n
\r\n
<payload>

• Header is encoded as text
• Header is a sequence of lines
• Each line ends with \r\n
• Header ends with \r\n\r\n

• Payload length is given by either:
• Content-length tag in header
• Payload is encoded in a format 

that uses a sentinel (special value 
that marks the end)



Try It Yourself: View HTTP Request

• $ nc –l 8080
Opens a TCP socket on port 8080 and waits for an 
incoming connection

• Point a browser running on the same machine to 
http://localhost:8080/first/second/third.html

• The output in the nc window is the HTTP request 
sent by the browser



Example HTTP Request
$ nc -l 8080
GET /first/second/third.html HTTP/1.1
Host: localhost:8080
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36
Upgrade-Insecure-Requests: 1
Accept: 
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/a
png,*/*;q=0.8
DNT: 1
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.8

What the browser sent



Try It Yourself: HTTP Response
$ nc neverssl.com 80
GET / HTTP/1.0
Host: neverssl.com

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 2536
Connection: keep-alive
Date: Sun, 07 Apr 2019 21:17:55 GMT
Last-Modified: Thu, 14 Jun 2018 00:16:40 GMT
ETag: "e8bb9152091d61caa9d69fed8c4aebc6"
Accept-Ranges: bytes
Server: AmazonS3
Vary: Accept-Encoding
Age: 65787
X-Cache: Hit from cloudfront
Via: 1.1 08f323eee70ddda7af34d5feb414ce27.cloudfront.net (CloudFront)
X-Amz-Cf-Id: HQC3zTXMz6vVxWhb9SHJ7MtHZXQzwz4OrSYRKKSF7c0G8Y0m2u_e_w==

<html>
<head>

<title>NeverSSL - helping you get online</title>.... <2536 bytes of data in all>

request

response



HTTP Protocol

Commands used in the request

Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct



HTTP Protocol

Result codes returned with the response
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Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!



PERFORMANCE



Performance Measure: PLT 
(Page Load Time)

• PLT is the key measure of web performance 
– From click until user sees page

• PLT depends on many factors
– Structure of page/content
– HTTP (and TCP!) protocol
– Network RTT and bandwidth
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v.



Page Load Time Impact

From How One Second Could Cost Amazon $1.6 Billion In Sales, March 15, 2012
https://www.fastcompanycom/1825005/how-one-second-could-cost-amazon-16-billion-sales
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HTTP 1.0  (1996)

• HTTP/1.0 uses one TCP connection 
to fetch one web resource
– Made HTTP very easy to build
– But gave fairly poor PLT …

• Framing?
– Length?
– Sentinel?
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HTTP 1.0

• Many reasons why PLT is larger than 
necessary
– Sequential request/responses, even when to 

different servers
• This is a browser implementation issue, rather than a 

protocol issue

– Multiple TCP connection setups to the same 
server



Reducing PLT: Parallel Connections

• One simple way to reduce PLT
– Browser runs multiple (8, say) HTTP instances in 

parallel
– Server is unchanged; already handled concurrent 

requests for many clients

• How does this help?
– Single HTTP wasn’t using network much …
– So parallel connections aren’t slowed much
– Reduces delay to completion of last fetch
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HTTP 1.1: PERSISTENT 
CONNECTIONS



Persistent Connections

• May fetch many resources from one server
– Fetching in parallel requires opening a new TCP connection 

for each
– Opening a TCP connection involves messages back and 

forth that result in more than a round-trip delay

• Alternative: persistent connections
– Make a TCP connection to a server
– Don’t close it when you get the response
– Instead, use it to send the next request to that server
– Lower overhead is better for both clients and servers
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Connection Use Strategies
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One request per 
connection

Sequential 
requests per 
connection

Pipelined 
requests per 
connection



Persistent Connections: Framing

• Before persistent connections, a request started with 
a connection and ended when the connection was 
closed
– That’s framing

• With persistent connections, how are requests and 
responses framed?
– Enforce use of content-length header field?

• What if content is dynamically generated?

– If not that, then what?



Can We Further Reduce PLT?
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Persistent Connections: Pipelining

• If we pipeline HTTP requests on a single TCP connection, 
how do we match responses to requests?

• Requests don’t have names
• Can we use ordering

– I.e., responses must be provided in same order requests were 
received

• In theory we could
– In practice, this is a substantial performance hit to the server

• In summary, while some pipelining could in theory be 
done, it wasn’t
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