
Network Layer



Where we are in the Course

• Moving on up to the Network Layer!
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Network Layer

• How to connect different link layer networks
• Routing as the primary concern
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Why do we need a Network layer?

• We can already build networks  with links and 
switches and send frames between hosts …
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Network Layer Approach

• Scaling:
• Hierarchy, in the form of prefixes

• Heterogeneity:
• IP for internetworking

• Bandwidth Control:
• Lowest-cost routing
• Later QOS (Quality of Service)
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Topics

• Network service models
• Datagrams (packets), virtual circuits

• IP (Internet Protocol)
• Internetworking
• Forwarding (Longest Matching Prefix)
• Helpers: ARP and DHCP
• Fragmentation and MTU discovery

• Errors: ICMP (traceroute!)
• IPv6, scaling IP to the world

• NAT, and “middleboxs”

• Routing Algorithms
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Networking Services







Store-and-Forward Packet Switching

• Both models are implemented with store-and-
forward packet switching

• Routers receive a complete packet, storing it temporarily if 
necessary before forwarding it onwards

• We use statistical multiplexing to share link bandwidth 
over time
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Store-and-Forward (2)

• Switching element has internal buffering for 
contention
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Store-and-Forward (3)

• Simplified view with per port output buffering
• Buffer is typically a FIFO (First In First Out) queue
• If full, packets are discarded (congestion, later)
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Datagram Model

• Packets contain a destination address; each router 
uses it to forward packets, maybe on different paths
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ISP’s equipment



Datagram Model (2)

• Each router has a forwarding table keyed by address
• Gives next hop for each destination address; may change
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A’s table (initially)     A’s table (later)    C’s Table          E’s Table

B
B





Virtual Circuit Model

• Three phases:
1. Connection establishment, circuit is set up

• Path is chosen, circuit information stored in routers 

2. Data transfer, circuit is used
• Packets are forwarded along the path

3. Connection teardown, circuit is deleted
• Circuit information is removed from routers

• Just like a telephone circuit, but virtual in that no bandwidth 
need be reserved; statistical sharing of links
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Virtual Circuits (2)

• Packets contain a short label to identify the circuit
• Labels don’t have global meaning, only unique for a link 
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ISP’s equipment



Virtual Circuits (4)

• Each router has a forwarding table keyed by circuit
• Gives output line and next label to place on packet 
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Internetworking (IP)





How Networks May Differ

• Basically, in a lot of ways:
• Service model (datagrams, VCs)
• Addressing (what kind)
• QOS (priorities, no priorities)
• Packet sizes
• Security (whether encrypted)

• Internetworking hides the differences with a common 
protocol. (Uh oh.)
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Internetworking – Cerf and Kahn

• Pioneers: Cerf and Kahn
• “Fathers of the Internet”
• In 1974, later led to TCP/IP

• Tackled the problems of 
interconnecting networks

• Instead of mandating a single 
network technology
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© 2009 IEEE

Vint Cerf Bob Kahn



Internet Reference Model

• Internet Protocol (IP) is the “narrow waist” 
• Supports many different links below and apps above
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IP as a Lowest Common 
Denominator
• Suppose only some networks support QOS or 

security etc.
• Difficult for internetwork to support

• Pushes IP to be a “lowest common denominator”
• Asks little of lower-layer networks
• Gives little as a higher layer service 
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IP Addresses

• IPv4 uses 32-bit addresses
• Later we’ll see IPv6, which uses 128-bit addresses

• Written in “dotted quad” notation
• Four 8-bit numbers separated by dots
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aaaaaaaabbbbbbbbccccccccdddddddd  ↔ A.B.C.D

8 bits 8 bits 8 bits 8 bits

00010010000111110000000000000001  ↔ 



IP Prefixes

• Addresses are allocated in blocks called prefixes
• Addresses in an L-bit prefix have the same top L bits
• There are 232-L addresses aligned on 232-L boundary
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IP Prefixes (2)

• Written in “IP address/length” notation
• Address is lowest address in the prefix, length is prefix bits
• E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
• So a /24 (“slash 24”) is 256 addresses, and a /32 is one 

address
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000100100001111100000000xxxxxxxx ↔ 

↔ 128.13.0.0/16



Classful IP Addressing

• Originally, IP addresses came in fixed size blocks 
with the class/size encoded in the high-order bits

• They still do, but the classes are now ignored
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0       

10      

110     

0 16 24 32 bits8

Class A, 224 addresses

Class B, 216 addresses

Class C, 28   addresses

Network portion Host portion



Classful IP Addressing

• This is an ARPANet assignment.



IP Forwarding

• Addresses on one network belong to a unique prefix

• Node uses a table that lists the next hop for prefixes
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D

CB

A

Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B



Longest Matching Prefix

• Prefixes in the table might overlap!
• Combines hierarchy with flexibility

• Longest matching prefix forwarding rule:
• For each packet, find the longest prefix that contains the 

destination address, i.e., the most specific entry
• Forward the packet to the next hop router for that prefix
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Longest Matching Prefix (2)
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Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B

192.24.0.0

192.24.63.255

/19

/22

192.24.12.0

192.24.15.255

IP address

192.24.6.0      → ?  
192.24.14.32  → ?
192.24.54.0    → ?

More 
specific



IP Address Work Slide:

• Route to D =     192.00011x.x.x

• Route to B =     192.00011000.000011x.x

• 192.24.6.0     = 192.00011000.00000110.00000000

• 192.24.14.32 = 192.00011000.00001110.00010000

• 192.24.54.0   = 192.00011000.00110110.00000000



Longest Matching Prefix (2)
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Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B

192.24.0.0

192.24.63.255

/19

/22

192.24.12.0

192.24.15.255

IP address

192.24.6.0      →  D 
192.24.14.32  → B
192.24.54.0    → D

More 
specific





Host Networking

• Consists of 4 pieces of data:
• IP Address
• Subnet Mask

• Defines local addresses

• Gateway
• Who (local) to send non-local packets to for routing

• DNS Server (Later)



Host Forwarding Table

• Give using longest matching prefix
• 0.0.0.0/0 is a default route that catches all IP addresses
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Prefix Next Hop

My network prefix Send to that IP

0.0.0.0/0 Send to my router



Flexibility of Longest Matching Prefix

• Can provide default behavior, with less specifics
• Send traffic going outside an organization to a border 

router (gateway)

• Can special case behavior, with more specifics
• For performance, economics, security, …
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Performance of Longest Matching 
Prefix
• Uses hierarchy for a compact table

• Relies on use of large prefixes

• Lookup more complex than table
• Used to be a concern for fast routers
• Not an issue in practice these days
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Issues?

• Where does this break down?



Network Layer (Day 2)

1) Form a group of 3
1.5) Introduce yourselves if you don’t already know each other

2) In your group, answer the following review questions

– Why would we want another set of addresses for 
internetworking when we already have unique hardware 
addresses at L2?

● Related… what makes an IP address different from an L2
(I.e. ethernet MAC) address?

– What new issues do we have to mask at the internetwork layer 
on top of many links to provide IP’s datagram service?



Where does the IP service model 
break down?

Bootstrapping (DHCP)

Finding Link nodes (ARP)

Really big packets (Fragmentation)

Errors in the network (ICMP)

Running out of addresses (IPv6, NAT)



Dynamic Host 
Configuration Protocol 
(DHCP)







DHCP

• DHCP (Dynamic Host Configuration Protocol), from 
1993, widely used

• It leases IP address to nodes

• Provides other parameters too
• Network prefix
• Address of local router
• DNS server, time server, etc.
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DHCP Protocol Stack

• DHCP is a client-server application
• Uses UDP ports 67, 68
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DHCP



DHCP Addressing

• Bootstrap issue:
• How does node send a message to DHCP server before it is 

configured?

• Answer:
• Node sends broadcast messages that delivered to all nodes on 

the network
• Broadcast address is all 1s
• IP (32 bit): 255.255.255.255
• Ethernet (48 bit): ff:ff:ff:ff:ff:ff
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DHCP Messages
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Client Server

One link



DHCP Messages (2)
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Client Server

DISCOVER

REQUEST

OFFER

ACK

All Broadcast (255.255.255.255)



DHCP Messages (3)

• To renew an existing lease, an abbreviated 
sequence is used:

• REQUEST, followed by ACK

• Protocol also supports replicated servers for 
reliability
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Address Resolution Protocol 
(ARP)





ARP (Address Resolution Protocol)

• Node uses to map a local IP address to its Link layer 
addresses
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Source
Ethernet

Dest.
Ethernet

Source 
IP

Dest.
IP Payload …

Link layer

From
DHCP

From
NIC

From ARP



ARP Protocol Stack

• ARP sits on top of link layer (L3→L2 translation)
• No servers, just asks node with target IP to identify itself
•  Uses broadcast to reach all nodes
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Ethernet

ARP



What layer is ARP?

Answer:
In the real world life is messy and layers break down…
Not a perfect model 

ARP uses L2 headers and L2 broadcast, but knows 
about L3 addresses… Maybe a layer 2.5?



ARP Messages
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Node Target

One link 



ARP Messages (2)

[root@host ~]# tcpdump -lni any arp & 
( sleep 1; arp -d 10.0.0.254; ping -c1 -n 
10.0.0.254 )

listening on any, link-type LINUX_SLL 
(Linux cooked), capture size 96 bytes

17:58:02.155495 arp who-has 
10.2.1.224 tell 10.2.1.253

17:58:02.317444 arp who-has 
10.0.0.96 tell 10.0.0.253

17:58:02.370446 arp who-has 
10.3.1.12 tell 10.3.1.61
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Node Target

REQUEST Broadcast

Who has IP 1.2.3.4?

REPLY

I do at 1:2:3:4:5:6



ARP Table

# arp -an | grep 10

? (10.241.1.114) at 00:25:90:3e:dc:fc [ether] on vlan241

? (10.252.1.8) at 00:c0:b7:76:ac:19 [ether] on vlan244

? (10.252.1.9) at 00:c0:b7:76:ae:56 [ether] on vlan244

? (10.241.1.111) at 00:30:48:f2:23:fd [ether] on vlan241

? (10.252.1.6) at 00:c0:b7:74:fb:9a [ether] on vlan244

? (10.241.1.121) at 00:25:90:2c:d4:f7 [ether] on vlan241

[...]

Or in the modern IPv4/6 world
`ip neigh`



Discovery Protocols

• Help nodes find each other
• There are more of them!

• E.g., Zeroconf/Bonjour/Avahi/mDNS

• Often involve broadcast
• Since nodes aren’t introduced
• Very handy glue 
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Any discovery questions?



Fragmentation...





Packet Size Problem

• Different networks have different max packet sizes
• Or MTU (Maximum Transmission Unit)
• E.g., Ethernet 1.5K, WiFi 2.3K

• Prefer large packets for efficiency (why?)
• But what size is too large?
• Difficult as node doesn’t know complete network path
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Packet Size Solutions

• Fragmentation (now)
• Split up large packets in if they are too big to send
• Classic method, dated

• Discovery (next)
• Find the largest packet that fits on the network path
• IP uses today instead of fragmentation
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IPv4 Fragmentation Procedure

• Routers split a packet that is too large:
• Typically break into large pieces
• Copy IP header to pieces
• Adjust length on pieces
• Set offset to indicate position
• Set MF (More Fragments) on all pieces except last

• Receiving hosts reassembles the pieces:
• Identification field links pieces together, MF tells receiver when 

complete
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IPv4 Fragmentation (2)
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ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

ID =
Data Len = 
Offset =
MF =

ID = 
Data Len =
Offset = 
MF =

Before
MTU = 2300

After
MTU = 1500

(Ignore length 
of headers)



IPv4 Fragmentation (3)
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ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

ID = 0x12ef
Data Len = 1500
Offset = 0
MF = 1

ID = 0x12ef
Data Len = 800
Offset = 1500
MF = 0

Before
MTU = 2300

After
MTU = 1500



IPv4 Fragmentation (4)

• It works!
• Allows repeated fragmentation

• But fragmentation is undesirable
• More work for routers, hosts
• Tends to magnify loss rate
• Security vulnerabilities too
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Path MTU Discovery

• Discover the MTU that will fit
• So we can avoid fragmentation
• The method in use today

• Host tests path with large packet
• Routers provide feedback if too large; they tell host what 

size would have fit
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Path MTU Discovery (2)
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  Try 1200 Try 900  

              

MTU=1200 bytes MTU=900MTU=1400



Path MTU Discovery (3)

CSE 461 University of Washington 86

  Try 1200 Try 900  

Test #2 Test #3Test #1 

MTU=1200 bytes MTU=900MTU=1400



Path MTU Discovery (4)

• Process may seem involved
• But usually quick to find right size
• MTUs smaller on edges of network

• Path MTU depends on the path and can change
• Search is ongoing

• Implemented with ICMP (next)
• Set DF (Don’t Fragment) bit in IP header to get feedback
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Questions on fragmentation & MTU???



Internet Control Message 
Protocol (ICMP)





Internet Control Message Protocol

• ICMP is a companion protocol to IP
• They are implemented together
• Sits on top of IP (IP Protocol=1)

• Provides error report and testing
• Error is at router while forwarding
• Also testing that hosts can use
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ICMP Message Format (2)

• Each ICMP message has a Type, Code, and Checksum

• Often carry the start of the offending packet as payload

• Each message is carried in an IP packet
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Src=router, Dst=A
Protocol = 1

Type=X, Code=Y
Src=A, Dst=B

XXXXXXXXXXXXXXX

Portion of offending packet,
starting with its IP header

ICMP headerIP header ICMP data





Traceroute (2)

• Traceroute repurposes TTL and ICMP functionality
• Sends probe packets increasing TTL starting from 1
• ICMP errors identify routers on the path
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. . . Local
Host

Remote
Host1 hop 2 hops

3 hops N-1 hops
N hops



What’s another example of a commonly used 
tool built around ICMP?

# ping -4 xkcd.com
PING xkcd.com (151.101.0.67) 56(84) bytes of data.
64 bytes from 151.101.0.67 (151.101.0.67): icmp_seq=1 ttl=53 time=1.12 ms
64 bytes from 151.101.0.67 (151.101.0.67): icmp_seq=2 ttl=53 time=0.934 ms
64 bytes from 151.101.0.67 (151.101.0.67): icmp_seq=3 ttl=53 time=1.15 ms
^C
--- xkcd.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 0.934/1.066/1.147/0.094 ms



Example ICMP Messages
  (there are others)
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Name Type / Code Usage

Dest. Unreachable (Net or Host) 3 / 0 or 1 Lack of connectivity

Dest. Unreachable (Fragment) 3 / 4 Path MTU Discovery

Time Exceeded (Transit) 11 / 0 Traceroute

Echo Request or Reply 8 or 0 / 0 Ping

Testing, not a forwarding error: Host sends Echo Request, 
and destination responds with an Echo Reply



Any general ICMP questions?



Network Address 
Translation (NAT)
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• Many billions of 
hosts

• And we’re using 32-
bit addresses!

Problem: Internet Growth







Layering Review

• Remember how layering is meant to work?
• “Routers don’t look beyond the IP header.” Well …
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IP

802.11

App

IP

802.11

IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Router



Middleboxes
• Sit “inside the network” but perform “more than IP” 

processing on packets to add new functionality
• NAT box, Firewall / Intrusion Detection System
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TCP

IP
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App

IP
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IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Middlebox

App / TCP



Middleboxes (2)

• Advantages
• A possible rapid deployment path when no other option
• Control over many hosts (IT)

• Disadvantages
• Breaking layering interferes with connectivity

• strange side effects

• Poor vantage point for many tasks
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NAT (Network Address Translation) Box

• NAT box maps an internal IP to an external IP
• Many internal hosts connected using few external addresses
• Middlebox that “translates addresses”

• Motivated by IP address scarcity
• Controversial at first, now accepted
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How NAT Works

• Keeps an internal/external translation table
• Typically uses IP address + TCP port
• This is address and port translation

• Need ports to make mapping 1-1 since there are fewer external IPs

108

Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

192.168.1.13 : 1234 44.25.80.3 : 1501

192.168.2.20 : 1234 44.25.80.3 : 1502

What ISP thinksWhat host thinks



How NAT Works (2)

• Internal → External:
• Look up and rewrite Source IP/port

CSE 461 University of Washington 109

Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External 
destination
IP=X, port=Y

Internal
source

Src =

Dst =

Src =

Dst =



How NAT Works (3)

• External → Internal
• Look up and rewrite Destination IP/port
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Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External 
source

IP=X, port=Y

Internal
destination

Src =

Dst =

Src =

Dst =



How NAT Works (4)

• Need to enter translations in the table for it to work
• Create external name when host makes a TCP connection

CSE 461 University of Washington 111

Internal  IP:port External  IP : port

192.168.1.12 : 5523

NAT box

External 
destination
IP=X, port=Y

Internal
source

Src =

Dst =

Src =

Dst =



NAT Downsides

• Connectivity has been broken!
• Can only send incoming packets after an outgoing 

connection is set up
• Difficult to run servers or peer-to-peer apps (Skype) 

• Doesn’t work when there are no connections (UDP)

• Breaks apps that expose their IP addresses (FTP)
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NAT Upsides

• Relieves much IP address pressure
• Many home hosts behind NATs

• Easy to deploy
• Rapidly, and by you alone

• Useful functionality
• Firewall, helps with privacy

• Kinks will get worked out eventually
• “NAT Traversal” for incoming traffic
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IPv6



Problem: Internet Growth

• Many billions of 
hosts

• And we’re using 
32-bit addresses!
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IP Version 6 to the Rescue

• Effort started by the IETF in 1994
• Much larger addresses (128 bits)
• Many sundry improvements

• Became an IETF standard in 1998
• Nothing much happened for a decade
• Hampered by deployment issues, and a lack of adoption 

incentives 
• Big push ~2011 as exhaustion looms
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IPv6 Transition

• The Big Problem:
• How to deploy IPv6?
• Fundamentally incompatible with IPv4

• Dozens of approaches proposed
• Dual stack (speak IPv4 and IPv6)
• Translators (convert packets)
• Tunnels (carry IPv6 over IPv4)
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Tunneling 

• Native IPv6 islands connected via IPv4
• Tunnel carries IPv6 packets across IPv4 network
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Tunneling (2)

• Tunnel acts as a single link across IPv4 network
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User UserTunnel



Tunneling (3)

• Tunnel acts as a single link across IPv4 network
• Difficulty is to set up tunnel endpoints and routing 
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IPv6

Link

User User

IPv4

Link

IPv6IPv6

Link

IPv6

Link
IPv4

Link

IPv6 IPv6

Link

Native IPv4Native IPv6 Native IPv6

Tunnel
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