
Link Layer:
Retransmissions

Context on Reliability

•Where in the stack should we place reliability
functions?

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application

Context on Reliability (2)

•Everywhere! It is a key issue
• Different layers contribute differently

CSE 461 University of Washington 3

Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application

So what do we do if a frame is
corrupted?
• From sender?

• From receiver?

ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be
corrected
• E.g., WiFi, and TCP (later)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an

ACK
• Sender automatically resends after a timeout, until an ACK is

received

CSE 461 University of Washington 5

ARQ (2)

•Normal operation (no loss)

CSE 461 University of Washington 6

Frame

ACK
Timeout Time

Sender Receiver

ARQ (3)

• Loss and retransmission

CSE 461 University of Washington 7

ACK

Frame

Timeout Time

Sender Receiver

Frame

X

So What’s Tricky About ARQ?

CSE 461 University of Washington 8

Duplicates

•What happens if an ACK is lost?

CSE 461 University of Washington 9

X

Frame

ACK
Timeout

Sender Receiver

Duplicates (2)

•What happens if an ACK is lost?

CSE 461 University of Washington 10

Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver

New
Frame??

Duplicates (3)

•Or the timeout is early?

CSE 461 University of Washington 11

ACK

Frame

Timeout

Sender Receiver

Duplicates (4)

•Or the timeout is early?

CSE 461 University of Washington 12

Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New
Frame??

So What’s Tricky About ARQ?

•Two non-trivial issues:
• How long to set the timeout?
• How to avoid accepting duplicate frames as new frames

•Want performance in the common case and
correctness always

• Ideas?
CSE 461 University of Washington 13

Timeouts

• Timeout should be:
• Not too big (link goes idle)
• Not too small (spurious resend)

• Fairly easy on a LAN
• Clear worst case, little variation

• Fairly difficult over the Internet
• Much variation, no obvious bound
• We’ll revisit this with TCP (later)

CSE 461 University of Washington 14

Sequence Numbers

•Frames and ACKs must both carry sequence
numbers for correctness

•To distinguish the current frame from the next one,
a single bit (two numbers) is sufficient
• Called Stop-and-Wait

CSE 461 University of Washington 15

Stop-and-Wait

• In the normal case:

CSE 461 University of Washington 16

Time

Sender Receiver

Stop-and-Wait (2)

• In the normal case:

CSE 461 University of Washington 17

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Stop-and-Wait (3)

•With ACK loss:

CSE 461 University of Washington 18

X

Frame 0

ACK 0
Timeout

Sender Receiver

Stop-and-Wait (4)

•With ACK loss:

CSE 461 University of Washington 19

Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a
Resend!

Stop-and-Wait (5)

•With early timeout:

CSE 461 University of Washington 20

ACK 0

Frame 0

Timeout

Sender Receiver

Stop-and-Wait (6)

•With early timeout:

CSE 461 University of Washington 21

Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …

Limitation of Stop-and-Wait

• It allows only a single frame to be outstanding from
the sender:
• Good for LAN, not efficient for high BD

•Ex: R=1 Mbps, D = 50 ms
• How many frames/sec? If R=10 Mbps?

CSE 461 University of Washington 22

Sliding Window

•Generalization of stop-and-wait
• Allows W frames to be outstanding
• Can send W frames per RTT (=2D)

• Various options for numbering frames/ACKs and handling loss
• Will look at along with TCP (later)

CSE 461 University of Washington 23

Multiple Access

Topic

• Multiplexing is the network word for the sharing of a resource

• What are some obvious ways to multiple a resource?

CSE 461 University of Washington 25

Topic

• Multiplexing is the network word for the sharing of a resource

• Classic scenario is sharing a link among different users
• Time Division Multiplexing (TDM)
• Frequency Division Multiplexing (FDM)

CSE 461 University of Washington 26

Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule

CSE 461 University of Washington 27

2 2 2 2

Frequency Division Multiplexing
(FDM)
• Put different users on different frequency bands

CSE 461 University of Washington 28

Overall FDM channel

TDM versus FDM

•Tradeoffs?

CSE 461 University of Washington 29

TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington 30

Rate

Time
FDM

TDM

TDM/FDM Usage

•Statically divide a resource
• Suited for continuous traffic, fixed number of users

•Widely used in telecommunications
• TV and radio stations (FDM)
• GSM (2G cellular) allocates calls using TDM within FDM

CSE 461 University of Washington 31

Multiplexing Network Traffic

•Network traffic is bursty
• ON/OFF sources
• Load varies greatly over time

CSE 461 University of Washington 32

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (2)

•Network traffic is bursty
• Inefficient to always allocate user their ON needs with

TDM/FDM

CSE 461 University of Washington 33

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (3)

•Multiple access schemes multiplex users according
to demands – for gains of statistical multiplexing

CSE 461 University of Washington 34

Rate

Time
Rate

Time

Rate

Time

R

R

R’<2R

Two users, each need R
Together they need R’ < 2R

How to control?

Two classes of multiple access algorithms: Centralized and distributed

• Centralized: Use a privileged “Scheduler” to pick who gets to transmit and
when.
• Positives: Scales well, usually efficient.
• Negatives: Requirements management, fairness
• Examples: Cellular networks (tower coordinates)

• Distributed: Have all participants “figure it out” through some mechanism.
• Positives: Operates well under low load, easy to set up, equality
• Negatives: Scaling is really hard,
• Examples: Wifi networks

Distributed (random) Access

•How do nodes share a single link? Who sends when,
e.g., in WiFI?
• Explore with a simple model

•Assume no-one is in charge
•Distributed system

CSE 461 University of Washington 36

Distributed (random) Access (2)

•We will explore random multiple access control
(MAC) protocols
• This is the basis for classic Ethernet
• Remember: data traffic is bursty

CSE 461 University of Washington 37

Zzzz..Busy! Ho hum

ALOHA Protocol

•Simple idea:
• Node just sends when it has traffic.
• If there was a collision (no ACK received) then wait a

random time and resend

•That’s it!

CSE 461 University of Washington 39

CSE 461 University of Washington 40

ALOHA Protocol (2)

•Some frames will
be lost, but many
may get through…

• Limitations?

ALOHA Protocol (3)

•Simple, decentralized protocol that works well
under low load!

•Not efficient under high load
• Analysis shows at most 18% efficiency
• Improvement: divide time into slots and efficiency goes up to 36%

•We’ll look at other improvements

CSE 461 University of Washington 41

CSE 461 University of Washington 42

Classic Ethernet
•ALOHA inspired Bob Metcalfe to

invent Ethernet for LANs in 1973
• Nodes share 10 Mbps coaxial cable
• Hugely popular in 1980s, 1990s

: © 2009 IEEE

CSMA (Carrier Sense Multiple
Access)
• Improve ALOHA by listening for activity before we

send (Doh!)
• Can do easily with wires, not wireless

•So does this eliminate collisions?
•Why or why not?

CSE 461 University of Washington 43

CSMA (2)

•Still possible to listen and hear nothing when
another node is sending because of delay

CSE 461 University of Washington 44

CSMA (3)

•CSMA is a good defense against collisions only when
BD is small

CSE 461 University of Washington 45

X

CSMA/CD (with Collision Detection)

•Can reduce the cost of collisions by detecting them
and aborting (Jam) the rest of the frame time
• Again, we can do this with wires

CSE 461 University of Washington 46

X X X X X X X XJam! Jam!

CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?

CSE 461 University of Washington 47

X

CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?
• Time window in which a node may hear of a collision

(transmission + jam) is 2D seconds

CSE 461 University of Washington 48

X

CSMA/CD Complications (2)

• Impose a minimum frame length of 2D seconds
• So node can’t finish before collision
• Ethernet minimum frame is 64 bytes – Also sets maximum

network length (500m w/ coax, 100m w/ Twisted Pair)

CSE 461 University of Washington 49

X

CSMA “Persistence”

•What should a node do if another node is sending?

• Idea: Wait until it is done, and send

CSE 461 University of Washington 50

What now?

CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue
up then collide
•More load, more of a problem

CSE 461 University of Washington 51

Now! Now!Uh oh

CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue
up then collide
• Ideas?

CSE 461 University of Washington 52

Now! Now!Uh oh

CSMA “Persistence” (3)

• Intuition for a better solution
• If there are N queued senders, we want each to send next

with probability 1/N

CSE 461 University of Washington 53

Send p=½WhewSend p=½

Binary Exponential Backoff (BEB)

•Cleverly estimates the probability
• 1st collision, wait 0 or 1 frame times
• 2nd collision, wait from 0 to 3 times
• 3rd collision, wait from 0 to 7 times …

•BEB doubles interval for each successive collision
• Quickly gets large enough to work
• Very efficient in practice

CSE 461 University of Washington 54

Classic Ethernet, or IEEE 802.3

•Most popular LAN of the 1980s, 1990s
• 10 Mbps over shared coaxial cable, with baseband signals
•Multiple access with “1-persistent CSMA/CD with BEB”

CSE 461 University of Washington 55

Modern Ethernet

•Based on switches, not multiple access, but still
called Ethernet
•We’ll get to it in a later segment

CSE 461 University of Washington 57

Switch

Twisted pair

Switch ports

No CS: Different Coverage Areas

•Wireless signal is broadcast and received nearby,
where there is sufficient SNR

CSE 461 University of Washington 60

No CS: Hidden Terminals

•Nodes A and C are hidden terminals when sending
to B
• Can’t hear each other (to coordinate) yet collide at B
•We want to avoid the inefficiency of collisions

CSE 461 University of Washington 61

No CS: Exposed Terminals

•B and C are exposed terminals when sending to A
and D
• Can hear each other yet don’t collide at receivers A and D
•We want to send concurrently to increase performance

CSE 461 University of Washington 62

Nodes Can’t Hear While Sending

•With wires, detecting collisions (and aborting)
lowers their cost

•More wasted time with wireless

CSE 461 University of Washington 63

Time XXXXXXXXX

XXXXXXXXX

Wireless
Collision

ResendX

X

Wired
Collision

Resend

Wireless Problems:

• Ideas?

MACA (Multiple Access with Collision
Avoidance)
• MACA uses a short handshake instead of CSMA (Karn, 1990)
• 802.11 uses a refinement of MACA (later)

• Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)

3. Sender transmits the frame while nodes hearing the CTS stay silent

• Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington 65

MACA – Hidden Terminals

• A B with hidden terminal C
1. A sends RTS, to B

CSE 461 University of Washington 66

DCBA
RTS

MACA – Hidden Terminals (2)

• A B with hidden terminal C
2. B sends CTS, to A, and C too

CSE 461 University of Washington 67

DCBA
RTS

CTSCTS

Alert!

MACA – Hidden Terminals (3)

• A B with hidden terminal C
3. A sends frame while C defers

CSE 461 University of Washington 68

Frame

Quiet...

MACA – Exposed Terminals

•B A, C D as exposed terminals
• B and C send RTS to A and D

CSE 461 University of Washington 69

DCBA
RTSRTS

MACA – Exposed Terminals (2)

•B A, C D as exposed terminals
• A and D send CTS to B and C

CSE 461 University of Washington 70

DCBA
RTSRTS

CTSCTS

All OKAll OK

MACA – Exposed Terminals (3)

•B A, C D as exposed terminals
• A and D send CTS to B and C

CSE 461 University of Washington 71

DCBA
FrameFrame

MACA

• Assumptions? Where does this break?

802.11 Physical Layer

• Uses 20/40 MHz channels on ISM (unlicensed) bands
• 802.11b/g/n on 2.4 GHz
• 802.11 a/n on 5 GHz

• OFDM modulation (except legacy 802.11b)
• Different amplitudes/phases for varying SNRs
• Rates from 6 to 54 Mbps plus error correction
• 802.11n uses multiple antennas

• Lots of fun tricks here

CSE 461 University of Washington 74

802.11 CSMA/CA for Multiple Access

• Still using BEB!

CSE 461 University of Washington 76

Time

Send?

Send?

Centralized MAC: Cellular

• Spectrum suddenly very very scarce
• We can’t waste all of it sending JAMs

• We have QoS requirements
• Can’t be as loose with expectations
• Can’t have traffic fail

• We also have client/server
• Centralized control
• Not peer-to-peer/decentralized

GSM MAC

• FDMA/TDMA

• Use one channel for coordination – Random access w/BEB (no CSMA,
can’t detect)

• Use other channels for traffic
• Dedicated channel for QoS

Link Layer: Switching

Topic

•How do we connect nodes with a switch instead of
multiple access
• Uses multiple links/wires
• Basis of modern (switched) Ethernet

CSE 461 University of Washington 80

Switch

Switched Ethernet

•Hosts are wired to Ethernet switches with twisted
pair
• Switch serves to connect the hosts
•Wires usually run to a closet

CSE 461 University of Washington 81

Switch

Twisted pair

Switch ports

CSE 461 University of Washington 82

What’s in the box?
•Remember from protocol layers:

Network

Link

Network

Link

Link Link

Physical PhysicalHub, or
repeater

Switch

Router

All look like this:

Inside a Switch (3)

•Need buffers for multiple inputs to send to one
output

CSE 461 University of Washington 87

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

Inside a Switch (4)

•Sustained overload will fill buffer and lead to frame
loss

CSE 461 University of Washington 88

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

XXX

Loss!

Advantages of Switches

•Switches and hubs (mostly switches) have replaced the
shared cable of classic Ethernet
• Convenient to run wires to one location
•More reliable; wire cut is not a single point of failure that is

hard to find

•Switches offer scalable performance
• E.g., 100 Mbps per port instead of 100 Mbps for all nodes of

shared cable / hub

CSE 461 University of Washington 89

Switch Forwarding

•Switch needs to find the right output port for the
destination address in the Ethernet frame. How?
• Link-level, don’t look at IP

. . .

. . .

.

Source

Destination

Ethernet Frame

Switch Forwarding

• Ideas?

. . .

. . .

.

Source

Destination

Ethernet Frame

Backward Learning

• Switch forwards frames with a port/address table as follows:
1. To fill the table, it looks at the source address of input frames

2. To forward, it sends to the port, or else broadcasts to all ports

CSE 461 University of Washington 92

Backward Learning (2)

• 1: A sends to D

CSE 461 University of Washington 93

Switch

D

Address Port

A

B

C

D

Backward Learning (3)

• 2: D sends to A

CSE 461 University of Washington 94

Switch

D

Address Port

A 1

B

C

D

Backward Learning (4)

• 3: A sends to D

CSE 461 University of Washington 95

Address Port

A 1

B

C

D 4

Switch

D

Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs,
e.g., A -> D then D -> A

CSE 461 University of Washington 96

Switch

CSE 461 University of Washington 98

Problem – Forwarding Loops

•May have a loop in the topology
• Redundancy in case of failures
• Or a simple mistake

•Want LAN switches to “just work”
• Plug-and-play, no changes to hosts
• But loops cause a problem …

Redundant
Links

CSE 461 University of Washington 99

Forwarding Loops (2)
•Suppose the network is started and

A sends to F. What happens?

Left / Right

A B

C

D

E F

CSE 461 University of Washington 100

Forwarding Loops (3)
• Suppose the network is started and A sends to F.

What happens?
• A → C → B, D-left, D-right
• D-left → C-right, E, F
• D-right → C-left, E, F
• C-right → D-left, A, B
• C-left → D-right, A, B

• D-left → …
• D-right → …

Left / Right

A B

C

D

E F

Spanning Tree Solution

•Switches collectively find a spanning tree for the
topology
• A subset of links that is a tree (no loops) and reaches all

switches
• They switches forward as normal on the spanning tree
• Broadcasts will go up to the root of the tree and down all

the branches

CSE 461 University of Washington 101

Spanning Tree (2)

CSE 461 University of Washington 102

Topology One ST Another ST

Spanning Tree (3)

CSE 461 University of Washington 103

Topology One ST Another ST

Root

Spanning Tree Algorithm

• Rules of the distributed game:
• All switches run the same algorithm
• They start with no information
• Operate in parallel and send messages
• Always search for the best solution

• Ensures a highly robust solution
• Any topology, with no configuration

• Adapts to link/switch failures, …

CSE 461 University of Washington 104

CSE 461 University of Washington 105

Radia Perlman (1952–)

• Key early work on routing protocols
• Routing in the ARPANET
• Spanning Tree for switches (next)
• Link-state routing (later)
• Worked at Digital Equipment Corp (DEC)

• Now focused on network security

Spanning Tree Algorithm (2)

• Outline:
1. Elect a root node of the tree (switch with the lowest address)

2. Grow tree as shortest distances from the root (using lowest address to
break distance ties)

3. Turn off ports for forwarding if they aren’t on the spanning tree

CSE 461 University of Washington 106

Spanning Tree Algorithm (3)

•Details:
• Each switch initially believes it is the root of the tree
• Each switch sends periodic updates to neighbors with:
• Its address, address of the root, and distance (in hops) to root
• Short-circuit when topology changes

• Switches favors ports with shorter distances to lowest root
• Uses lowest address as a tie for distances

CSE 461 University of Washington 107

C

Hi, I’m C, the root is A, it’s 2 hops away or (C, A, 2)

CSE 461 University of Washington 108

Spanning Tree Example
• 1st round, sending:
• A sends (A, A, 0) to say it is root
• B, C, D, E, and F do likewise

• 1st round, receiving:
• A still thinks is it (A, A, 0)
• B still thinks (B, B, 0)
• C updates to (C, A, 1)
• D updates to (D, C, 1)
• E updates to (E, A, 1)
• F updates to (F, B, 1)

A,A,0 B,B,0

C,C,0

D,D,0

E,E,0 F,F,0

CSE 461 University of Washington 109

Spanning Tree Example (2)
• 2nd round, sending
• Nodes send their updated state

• 2nd round receiving:
• A remains (A, A, 0)
• B updates to (B, A, 2) via C
• C remains (C, A, 1)
• D updates to (D, A, 2) via C
• E remains (E, A, 1)
• F remains (F, B, 1)

A,A,0 B,B,0

C,A,1

D,C,1

E,A,1 F,B,1

CSE 461 University of Washington 110

Spanning Tree Example (3)
• 3rd round, sending
• Nodes send their updated state

• 3rd round receiving:
• A remains (A, A, 0)
• B remains (B, A, 2) via C
• C remains (C, A, 1)
• D remains (D, A, 2) via C-left
• E remains (E, A, 1)
• F updates to (F, A, 3) via B

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,B,1

CSE 461 University of Washington 111

Spanning Tree Example (4)
•4th round
• Steady-state has been reached
• Nodes turn off forwarding that is

not on the spanning tree

•Algorithm continues to run
• Adapts by timing out information
• E.g., if A fails, other nodes forget it,

and B will become the new root

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

CSE 461 University of Washington 112

Spanning Tree Example (5)
• Forwarding proceeds as usual on the ST

• Initially D sends to F:

• And F sends back to D:

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

CSE 461 University of Washington 113

Spanning Tree Example (6)
• Forwarding proceeds as usual on the ST

• Initially D sends to F:
• D → C-left
• C → A, B
• A → E
• B → F

• And F sends back to D:
• F → B
• B → C
• C → D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

Link Layer: Software
Defined Networking

Topic

•How do we scale these networks up?
• Answer 1: Network of networks, a.k.a. The Internet
• Answer 2: Ah, just kinda hope spanning tree works?

CSE 461 University of Washington 116

SwitchSwitch Switch

Scaling the Link Layer

• Fundamentally, it’s hard to scale distributed algorithms
 Exacerbated when failures become common
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 119

Software Defined Networking (SDN)

• Core idea: stop being a distributed system
 Centralize the operation of the network

 Create a “controller” that manages the network
 Push new code, state, and configuration from “controller” to switches

 Run link state with a global view of the network rather than in a distributed
fashion.

 Allows for “global” policies to be enforced.
 Can resolve failures in more robust, faster manners

 Problems?

CSE 461 University of Washington 120

SDN – Problem 1

• Problem: How do we talk to the switches if there’s no network?
 Seems a little chicken-and-egg
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 121

SDN – Problem 2

• Problem: How do we efficiently run algorithms on switches?
 These are extremely time-sensitive boxes

 Gotta move the packets!
 Need to be able to support

 Fast packet handling
 Quick route changes
 Long-term policy updates

• Ideas?

CSE 461 University of Washington 123

SDN – OpenFlow

• Two different classes of programmability

• At Controller
 Can be heavy processing algorithms
 Results in messages that update switch flow table

• At switch
 Local flow table
 Built from basic set of networking primitives
 Allows for fast operation

CSE 461 University of Washington 125

SDN – Timescales

CSE 461 University of Washington 126

Data Control Management

Time-
scale

Packet (nsec) Event (10
msec to sec)

Human (min
to hours)

Location Linecard
hardware

Router
software

Humans or
scripts

SDN – Key outputs

• Simplify network design and implementation?
 Sorta. Kinda pushed the complexity around if anything

• However...
 Does enable code reuse and libraries
 Does standardize and simplify deployment of rules to switches
 Allows for fast operation

CSE 461 University of Washington 128

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128

