
Link Layer

Where we are in the Course

• Moving on up to the Link Layer!

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application

Scope of the Link Layer

• Concerns how to transfer messages over one or
more connected links

• Messages are frames, of limited size
• Builds on the physical layer

CSE 461 University of Washington 4

Frame

What are some challenges in the
link layer?

 What abstractions would we like to build?

Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 8

Framing
Delimiting start/end of frames

Topic

• The Physical layer gives us a stream of bits. How do
we interpret it as a sequence of frames?

CSE 461 University of Washington 10

…10110 …

Um?

Simple ideas?

Framing Methods

• We’ll look at:
• Byte count (motivation)

• Byte stuffing
• Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11

CSE 461 University of Washington 12

Byte Count

• First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …

CSE 461 University of Washington 13

Byte Count (2)

How well do you think it works?

CSE 461 University of Washington 14

Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

CSE 461 University of Washington 15

Byte Stuffing (2)

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC

CSE 461 University of Washington 18

Byte Stuffing (3)

• Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington 19

Unstuffing

You see:

1. Solitary FLAG?

2. Solitary ESC?

3. ESC FLAG?

4. ESC ESC FLAG?

5. ESC ESC ESC FLAG?

6. ESC FLAG FLAG?

Unstuffing

You see:

1. Solitary FLAG? ->

2. Solitary ESC? ->

3. ESC FLAG? ->

4. ESC ESC FLAG? ->

5. ESC ESC ESC FLAG? ->

6. ESC FLAG FLAG? ->

Start or end of packet

Bad packet!

remove ESC and pass FLAG through

pass one ESC and then start of end of packet

pass ESC FLAG through

pass FLAG through then start of end of packet

Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted

CSE 461 University of Washington 22

Bit Stuffing (2)

• Example:

CSE 461 University of Washington 23

Transmitted bits
with stuffing

Data bits

Bit Stuffing (3)

• So how does it compare with byte stuffing?

CSE 461 University of Washington 24

Transmitted bits
with stuffing

Data bits

Link Example: PPP over SONET

• PPP is Point-to-Point Protocol

• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links

CSE 461 University of Washington 25

Link Layer: Error detection
and correction

Topic

• Some bits will be received in error due to noise.
What can we do?

•Reliability is a concern that cuts across the layers

CSE 461 University of Washington 30

Later

Detect errors with codes
Correct errors with codes
Retransmit lost frames

Problem – Noise may flip received
bits

CSE 461 University of Washington 31

Signal
0 0 0 0

11 1

0

0 0 0 0

11 1

0

0 0 0 0

11 1

0

Slightly
Noisy

Very
noisy

• Ideas?

Approach – Add Redundancy

• Error detection codes
• Add check bits to the message bits to let some errors be

detected

• Error correction codes
• Add more check bits to let some errors be corrected

• Key issue is now to structure the code to detect many
errors with few check bits and modest computation

CSE 461 University of Washington 33

• Ideas?

Motivating Example

• A simple code to handle errors:
• Send two copies! Error if different.

• How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

CSE 461 University of Washington 35

Motivating Example (2)

• We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental errors (will look at secure

hashes later)

CSE 461 University of Washington 36

Using Error Codes

• Codeword consists of D data plus R check bits
(=systematic block code)

• Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 37

D R=fn(D)

Data bits Check bits

Using Error Codes (2)

• Receiver:
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if

R doesn’t match R’

CSE 461 University of Washington 38

D R’

Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

• For D data bits, R check bits:

• Randomly chosen codeword is unlikely to be correct;
overhead is low

CSE 461 University of Washington 39

All
codewords

Correct
codewords

CSE 461 University of Washington 40

R.W. Hamming (1915-1998)

• Much early work on codes:
• “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

• “If the computer can tell when an error has
occurred, surely there is a way of telling where
the error is so the computer can correct the error
itself” - Hamming

Source: IEEE GHN, © 2009 IEEE

Hamming Distance

• Distance is the number of bit flips needed to change
D1 to D2

• Hamming distance of a coding is the minimum error
distance between any pair of codewords (bit-
strings) that cannot be detected

CSE 461 University of Washington 41

Hamming Distance (2)

• Error detection:
• For a coding of distance d+1, up to d errors will always be

detected

• Error correction:
• For a coding of distance 2d+1, up to d errors can always be

corrected by mapping to the closest valid codeword

CSE 461 University of Washington 42

Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of
the D bits

• Sum is modulo 2 or XOR

CSE 461 University of Washington 43

Parity Bit (2)

• How well does parity work?
• What is the distance of the code?
• How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 44

Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity

CSE 461 University of Washington 45

1500 bytes 16 bits

Internet Checksum

• Sum is defined in 1s complement arithmetic (must
add back carries)

• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 46

CSE 461 University of Washington 47

Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001
f204
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 48

Internet Checksum (3)
0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

CSE 461 University of Washington 49

Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd

+ 2

ffff

 0000

CSE 461 University of Washington 50

Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd

+ 2

ffff

 0000

Internet Checksum (6)

• How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 51

Cyclic Redundancy Check (CRC)

• Even stronger protection
• Given n data bits, generate k check bits such that the n+k

bits are evenly divisible by a generator C

• Example with numbers:
• n = 302, k = one digit, C = 3

CSE 461 University of Washington 52

CRCs (2)

• The catch:
• It’s based on mathematics of finite fields, in which “numbers” represent

polynomials

• e.g, 10011010 is x7 + x4 + x3 + x1

• What this means:
• We work with binary values and operate using modulo 2 arithmetic

CSE 461 University of Washington 53

CRCs (3)

• Send Procedure:

1. Extend the n data bits with k zeros

2. Divide by the generator value C

3. Keep remainder, ignore quotient

4. Adjust k check bits by remainder

• Receive Procedure:

1. Divide and check for zero remainder

CSE 461 University of Washington 54

CRCs (4)

CSE 461 University of Washington 55

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4

1 0 0 1 1 1 1 0 1 0 1 1 1 1 1

CRCs (6)

• Protection depend on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
• HD=4, detects up to triple bit errors
• Also odd number of errors
• And bursts of up to k bits in error
• Not vulnerable to systematic errors like checksums

CSE 461 University of Washington 57

Why Error Correction is Hard

• If we had reliable check bits we could use them to
narrow down the position of the error

• Then correction would be easy

• But error could be in the check bits as well as the
data bits!

• Data might even be correct

CSE 461 University of Washington 58

Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance
of at least 3

• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them
by mapping an error to the closest valid codeword

• Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 59

Intuition (2)

• Visualization of code:

CSE 461 University of Washington 60

A

B

Valid
codeword

Error
codeword

Intuition (3)

• Visualization of code:

CSE 461 University of Washington 61

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Hamming Code

• Gives a method for constructing a code with a
distance of 3

• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting

with position 1
• Check bit in position p is parity of positions with a p term

in their values

• Plus an easy way to correct [soon]

CSE 461 University of Washington 62

Hamming Code (2)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 63

 _ _ _ _ _ _ _
1 2 3 4 5 6 7

Hamming Code (3)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 64

 0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0

1 2 3 4 5 6 7

Hamming Code (4)

• To decode:
• Recompute check bits (with parity sum including the

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington 65

Hamming Code (5)

• Example, continued

CSE 461 University of Washington 66

 0 1 0 0 1 0 1

p1= p2=

p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (6)

• Example, continued

CSE 461 University of Washington 67

 0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,

p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

Hamming Code (7)

• Example, continued

CSE 461 University of Washington 68

 0 1 0 0 1 1 1

p1= p2=

p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (8)

• Example, continued

CSE 461 University of Washington 69

 0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,

p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 70

 0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1

1 2 3 4 5 6 7

Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 71

 0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1

1 2 3 4 5 6 7

CSE 461 University of Washington 73

Other Codes (2) – Turbo Codes
• Turbo Codes

• Evolution of convolutional codes
• Sends multiple sets of parity bits with payload
• Decodes sets together (e.g. Sudoku)
• Used in 3G and 4G cellular technologies

• Invented and patented by Claude Berrou
• Professor at École Nationale Supérieure des

Télécommunications de Bretagne

CSE 461 University of Washington 74

Other Codes (3) – LDPC
• Low Density Parity Check (§3.2.3)

• LDPC based on sparse matrices
• Decoded iteratively using a belief

propagation algorithm

• Invented by Robert Gallager in 1963
as part of his PhD thesis

• Promptly forgotten until 1996 …

Source: IEEE GHN, © 2009 IEEE

Detection vs. Correction

• Which is better will depend on the pattern of errors.
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?

CSE 461 University of Washington 75

Detection vs. Correction

• Which is better will depend on the pattern of errors.
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
• It still depends! We need to know more about the errors

CSE 461 University of Washington 76

Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need ~10 check bits per message
• Overhead:

Error detection:
• Need ~1 check bits per message plus 1000 bit retransmission

• Overhead:

CSE 461 University of Washington 77

Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead:

Error detection:
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time

• Overhead:

CSE 461 University of Washington 78

Detection vs. Correction (4)

• Error correction:
• Needed when errors are expected

• Or when no time for retransmission

• Error detection:
• More efficient when errors are not expected
• And when errors are large when they do occur

CSE 461 University of Washington 79

Error Correction in Practice

• Heavily used in physical layer
• LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for
residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington 80

	Slide 1
	Where we are in the Course
	Typical Implementation of Layers (2)
	Scope of the Link Layer
	In terms of layers …
	In terms of layers (2)
	Slide 7
	Topics
	Framing
	Topic
	Simple ideas?
	Framing Methods
	Byte Count
	Byte Count (2)
	Byte Count (3)
	Byte Stuffing
	Byte Stuffing
	Byte Stuffing (2)
	Byte Stuffing (3)
	Unstuffing
	Unstuffing
	Bit Stuffing
	Bit Stuffing (2)
	Bit Stuffing (3)
	Link Example: PPP over SONET
	Link Example: PPP over SONET (2)
	Link Example: PPP over SONET (3)
	Link Layer: Error detection and correction
	Topic
	Problem – Noise may flip received bits
	Slide 32
	Approach – Add Redundancy
	Slide 34
	Motivating Example
	Motivating Example (2)
	Using Error Codes
	Using Error Codes (2)
	Intuition for Error Codes
	R.W. Hamming (1915-1998)
	Hamming Distance
	Hamming Distance (2)
	Simple Error Detection – Parity Bit
	Parity Bit (2)
	Checksums
	Internet Checksum
	Internet Checksum (2)
	Internet Checksum (3)
	Internet Checksum (4)
	Internet Checksum (5)
	Internet Checksum (6)
	Cyclic Redundancy Check (CRC)
	CRCs (2)
	CRCs (3)
	CRCs (4)
	CRCs (5)
	CRCs (6)
	Why Error Correction is Hard
	Intuition for Error Correcting Code
	Intuition (2)
	Intuition (3)
	Hamming Code
	Hamming Code (2)
	Hamming Code (3)
	Hamming Code (4)
	Hamming Code (5)
	Hamming Code (6)
	Hamming Code (7)
	Hamming Code (8)
	Hamming Code (3)
	Hamming Code (3)
	Other Error Correction Codes
	Other Codes (2) – Turbo Codes
	Other Codes (3) – LDPC
	Detection vs. Correction
	Detection vs. Correction
	Detection vs. Correction (2)
	Detection vs. Correction (3)
	Detection vs. Correction (4)
	Error Correction in Practice

