Physical Layer

Lecture Progression

• Bottom-up through the layers:

Application	- HTTP, DNS, CDNs
Transport	- TCP, UDP
Network	- IP, NAT, BGP
Link	- Ethernet, 802.11
Physical - v	vires, fiber, wireless

- Followed by more detail on:
 - Quality of service, Security (VPN, SSL)

Where we are in the Course

• Beginning to work our way up starting with the Physical layer

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry <u>analog signals</u>
 - We want to send <u>digital bits</u>

Topics

- 1. Coding and Modulation schemes
 - Representing bits, noise
- 2. Properties of media
 - Wires, fiber optics, wireless, propagation
 - Bandwidth, attenuation, noise
- 3. Fundamental limits
 - Nyquist, Shannon

Coding and Modulation

Торіс

- How can we send information across a link?
 - This is the topic of coding and modulation
 - Modem (from modulator-demodulator)

A Simple Coding

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Modulation (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Modulation (3)

• Problems?

Many Other Schemes

- Can use more signal levels
 - E.g., 4 levels is 2 bits per symbol
- Practical schemes are driven by engineering considerations
 - E.g., clock recovery

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Ideas?

Answer 1: A Simple Coding

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
- Then go back to OV for a "Reset"
 - This is called RZ (Return to Zero)

Answer 2: Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - 0000 [] 11110, 0001 [] 01001, 1110 [] 11100, ... 1111 [] 11101
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI, §2.5.1)

Answer 2: Clock Recovery – 4B/5B (2)

- 4B/5B code for reference:
 0000[11110, 0001[01001, 1110[11100, ... 1111[11101
- Message bits: 1111 0000 0001

Clock Recovery – 4B/5B (3)

- 4B/5B code for reference:
 0000[11110, 0001[01001, 1110[11100, ... 1111[11101
- Message bits: 1111 0000 0001

Modulation vs Coding

- What we have seen so far is called <u>coding</u>
 Signal is sent directly on a wire
- These signals do not propagate well as RF
 Need to send at higher frequencies
- <u>Modulation</u> carries a signal by modulating a carrier
 - Baseband is signal pre-modulation
 - Keying is the *digital* form of modulation (equivalent to coding but using modulation)

Passband Modulation (2)

- Carrier is simply a signal oscillating at a desired frequency:
- We can modulate it by changing:
 - Amplitude, frequency, or phase

Comparisons

Philosophical Takeaways

- Everything is analog, even digital signals
- Digital information is a *discrete* concept represented in an analog physical medium
 A printed book (analog) vs.
 - Words conveyed in the book (digital)

Simple Link Model

- We'll end with an abstraction of a physical channel
 - <u>Rate</u> (or bandwidth, capacity, speed) in bits/second
 - <u>Delay</u> in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Message Latency

- Latency is the delay to send a message over a link
 - <u>Transmission delay</u>: time to put M-bit message "on the wire"

• <u>Propagation delay</u>: time for bits to propagate across the wire

• Combining the two terms we have:

Message Latency (2)

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

• <u>Propagation delay</u>: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / $\frac{2}{3}c$ = D seconds

• Combining the two terms we have: L = M/R + D

Latency Examples

- "Dialup" with a telephone modem:
 - D = 5 ms, R = 56 kbps, M = 1250 bytes

- Broadband cross-country link:
 - D = 50 ms, R = 10 Mbps, M = 1250 bytes

Latency Examples (2)

- "Dialup" with a telephone modem:
 - D = 5 ms, R = 56 kbps, M = 1250 bytes
 - L = (1250x8)/(56 x 10³) sec + 5ms = 184 ms!
- Broadband cross-country link:
 - D = 50 ms, R = 10 Mbps, M = 1250 bytes
 - L = (1250x8) / (10 x 10⁶) sec + 50ms = 51 ms
- A long link or a slow rate means high latency: One component dominates

Bandwidth-Delay Product

- Messages take space on the wire!
- The amount of data in flight is the <u>bandwidth-delay</u> (BD) product

 $BD = R \times D$

- Measure in bits, or in messages
- Small for LANs, big for "long fat" pipes

Bandwidth-Delay Example

• Fiber at home, cross-country R=40 Mbps, D=50 ms

Bandwidth-Delay Example (2)

- Fiber at home, cross-country R=40 Mbps, D=50 ms BD = 40 x 10^6 x 50 x 10^{-3} bits = 2000 Kbit = 250 KB
- That's quite a lot of data in the network"!

Media

² media

noun, often attributive

Definition of MEDIA

plural medias

1 : a medium of cultivation, conveyance, or expression • Air is a media that conveys sound.; especially : MEDIUM 2b

Types of Media

- <u>Media</u> propagate <u>signals</u> that carry <u>bits</u> of information
- We'll look at some common types:
 - Wires
 - Fiber (fiber optic cables)
 - Wireless

Wires – Twisted Pair

- Very common; used in LANs and telephone lines
 - Twists reduce radiated signal

Wires – Coaxial Cable

• Also common. Better shielding for better performance

• Other kinds of wires too: e.g., electrical power (§2.2.4)

Fiber

- Long, thin, pure strands of glass
 - Enormous bandwidth (high speed) over long distances

Fiber (2)

• Two varieties: multi-mode (shorter links, cheaper) and single-mode (up to ~100 km)

Fiber bundle in a cable

Signals over Fiber

- Light propagates with very low loss in three very wide frequency bands
 - Use a carrier to send information

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u> at a receiver; need to coordinate use

Wireless Interference

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

NON-SOVERIMENT EXCLUSIVE

Wireless (2)

• Unlicensed (ISM) frequencies, e.g., WiFi, are widely used for computer networking

Multipath (3)

- Signals bounce off objects and take multiple paths
 - Some frequencies attenuated at receiver, varies with location

Wireless (4)

- Various other effects too!
 - Wireless propagation is complex, depends on environment
- Some key effects are highly frequency dependent,
 - E.g., <u>multipath</u> at microwave frequencies