CSE 461 Midterm Review

Autumn 2019

Section Overview

- Physical Layer
- ✤ Link Layer
- ✤ IP Layer

Physical Layer

Modulation Methods: Amplitude, Frequency, Phase Latency:

- Transmission Delay
 - Δt between the 1st bit on the wire and the last bit on the wire
- Propagation Delay
 - Time for bits to travel from one end to the other
- Bandwidth-Delay Product

Shannon Capacity

The maximum rate of information that can be transmitted over a channel of a specified bandwidth in the presence of noise without loss:

 $C = B * log_2(1 + S/N)$

C: Transmission rate S: Signal B: Bandwidth N: Noise

⇒ Increasing Bandwidth is MUCH more effective than increasing Signal or decreasing Noise.

Link Layer

Framing:

Byte Counting, Byte Stuffing, Bit Stuffing Error Detection/Correction:

- Hamming Distance
 - The minimum number of bits to change from valid codeword to another
- Parity Bit
 - XOR corresponding bits
- Retransmissions:
 - Automatic Repeat reQuest (ARQ)
 - Stop-and-Wait & Sliding window

Multiple Access Problem

- ALOHA: Node just sends when it has traffic; if collision happens, wait for a random amount of time and try again. ⇒ Huge amount of loss under high load
- CSMA (Carrier Sense Multiple Access): Listen before send.

 Collision is still possible because
 of delay
- CSMA/CD (Carrier Sense Multiple Access with Collision Detection): CSMA + Aborting JAM for the rest of the frame time

 Minimum frame length of 2D seconds
- CSMA "Persistence": CSMA + P(send) = 1 / N ⇒ Reduce the chance of collision
- Binary Exponential Backoff (BEB): Doubles interval for each successive collision ⇒ Very efficient in practice

Hidden vs. Exposed Terminal Problem

- Hidden Node Problem: Node A and node C both want to send to node B. Since A and C are out
 of each other's range, they can't "see" each other. Collision could happen if A and C are transmit
 to B simultaneously.
- Exposed Terminal Problem: Node B wants to send to node A, node C wants to send to node D.
 B and C are near each other while A and D are far apart. B and C are afraid of interfering each other's transmission and would both "shut up."
- Solution? RTS-CTS Mechanism!

Switching

- **Backward Learning:** Learn the sender's port by looking at the packets
- Spanning Tree Solution:
 - Elect the root node of the tree (Usually the switch with the lowest address)
 - Grow tree based on the shortest distance from the root
 - Ports not on the spanning tree are turned off

IP Layer

Datagram Model:

- Connectionless service
- Packets contain destination address
- Packets may use different paths
- Each router has a forwarding table keyed by ip address.

Virtual Circuit Model:

- Connection-oriented service
- Packets contain labels to identify the circuit
- Packets use the same path
- Each router has a forwarding table keyed by circuit

Breakdown of IP

- Bootstrapping (DHCP)
- Finding Link nodes (ARP)
- Really big packets (Fragmentation)
- Errors in the network (ICMP)
- Running out of addresses (IPv6, NAT)

DHCP

- **Purpose:** Automatically configure addresses
- Steps of DHCP :
 - The node broadcasts a DISCOVER message on the local network (255.255.255.255)
 - DHCP server responds with an OFFER message
 - The node sends a REQUEST message to the server, asking for an ip address
 - The server responds with an ACK message, assigning an ip address

NAT (Network Address Translation)

- **Purpose:** Provide a solution to the exhaustion of ipv4 addresses

G00D luck :)