Link Layer: Error detection and correction
Some bits will be received in error due to noise. What can we do?

- Detect errors with codes
- Correct errors with codes
- Retransmit lost frames

Reliability is a concern that cuts across the layers
Problem – Noise may flip received bits

<table>
<thead>
<tr>
<th>Signal</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slightly Noisy</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Noisy</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Very noisy</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
• Ideas?
Approach – Add Redundancy

• Error detection codes
 • Add check bits to the message bits to let some errors be detected

• Error correction codes
 • Add more check bits to let some errors be corrected

• Key issue is now to structure the code to detect many errors with few check bits and modest computation
• Ideas?
Motivating Example

• A simple code to handle errors:
 • Send two copies! Error if different.

• How good is this code?
 • How many errors can it detect/correct?
 • How many errors will make it fail?
Motivating Example (2)

• We want to handle more errors with less overhead
 • Will look at better codes; they are applied mathematics
 • But, they can’t handle all errors
 • And they focus on accidental errors (will look at secure hashes later)
Using Error Codes

• Codeword consists of D data plus R check bits (=systematic block code)

<table>
<thead>
<tr>
<th>Data bits</th>
<th>Check bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>R = fn(D)</td>
</tr>
</tbody>
</table>

• Sender:
 • Compute R check bits based on the D data bits; send the codeword of D+R bits
Using Error Codes (2)

• Receiver:
 • Receive D+R bits with unknown errors
 • Recompute R check bits based on the D data bits; error if R doesn’t match R’

\[R = f_n(D) \]

= ?
Intuition for Error Codes

• For D data bits, R check bits:

 • Randomly chosen codeword is unlikely to be correct; overhead is low
R.W. Hamming (1915-1998)

• Much early work on codes:
 • “Error Detecting and Error Correcting Codes”, BSTJ, 1950

• See also:
 • “You and Your Research”, 1986
Hamming Distance

• Distance is the number of bit flips needed to change D_1 to D_2

• **Hamming distance** of a coding is the minimum distance between any pair of codewords (bit-strings) that cannot be detected
Hamming Distance (2)

• Error detection:
 • For a coding of distance $d+1$, up to d errors will always be detected

• Error correction:
 • For a coding of distance $2d+1$, up to d errors can always be corrected by mapping to the closest valid codeword
Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of the D bits
 • Sum is modulo 2 or XOR
Parity Bit (2)

• How well does parity work?
 • What is the distance of the code?
 • How many errors will it detect/correct?

• What about larger errors?
Checksums

• Idea: sum up data in N-bit words
 • Widely used in, e.g., TCP/IP/UDP

| 1500 bytes | 16 bits |

• Stronger protection than parity
Internet Checksum

• Sum is defined in 1s complement arithmetic (must add back carries)
 • And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ...” – RFC 791
Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

0001
f204
f4f5
f6f7
Internet Checksum (3)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{align*}
0001 & \rightarrow f204 \\
f4f5 & + f6f7 \\
\hline
2ddf1 & + (0000) \\
\hline
ddf1 & + 2 \\
\hline
ddf3 & + \\
220c &
\end{align*}
\]
Internet Checksum (4)

Receiving:

1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

\[
\begin{align*}
0001 & \quad \text{f204} \\
\text{f4f5} & \quad \text{f6f7} \\
+ \quad 220c & \quad \text{ffff} \\
\end{align*}
\]
Internet Checksum (5)

Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

\[
\begin{array}{c}
0001 \\
f204 \\
f4f5 \\
f6f7 \\
+ 220c \\
\hline \\
2fffd \\
\hline \\
ffffd \\
+ 2 \\
\hline \\
ffff \\
\hline \\
0000
\end{array}
\]
Internet Checksum (6)

• How well does the checksum work?
 • What is the distance of the code?
 • How many errors will it detect/correct?

• What about larger errors?
Cyclic Redundancy Check (CRC)

• Even stronger protection
 • Given n data bits, generate k check bits such that the n+k bits are evenly divisible by a generator C

• Example with numbers:
 • n = 302, k = one digit, C = 3
CRCs (2)

• The catch:
 • It’s based on mathematics of finite fields, in which “numbers” represent polynomials
 • e.g, 10011010 is $x^7 + x^4 + x^3 + x^1$

• What this means:
 • We work with binary values and operate using modulo 2 arithmetic
CRCs (3)

• Send Procedure:
 1. Extend the n data bits with k zeros
 2. Divide by the generator value C
 3. Keep remainder, ignore quotient
 4. Adjust k check bits by remainder

• Receive Procedure:
 1. Divide and check for zero remainder
CRCs (4)

Data bits: \[10011110101111 \]

1101011111

Check bits:
\[C(x) = x^4 + x^1 + 1 \]

C = 10011

k = 4
CRCs (6)

- Protection depend on generator
 - Standard CRC-32 is 10000010 01100000 10001110 110110111

- Properties:
 - HD=4, detects up to triple bit errors
 - Also odd number of errors
 - And bursts of up to k bits in error
 - Not vulnerable to systematic errors like checksums
Why Error Correction is Hard

• If we had reliable check bits we could use them to narrow down the position of the error
 • Then correction would be easy

• But error could be in the check bits as well as the data bits!
 • Data might even be correct
Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance of at least 3
 • Need ≥3 bit errors to change one valid codeword into another
 • Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 • Works for d errors if HD ≥ 2d + 1
Intuition (2)

• Visualization of code:

Valid codeword

Error codeword
Intuition (3)

- Visualization of code:

Single bit error from A

Three bit errors to get to B

Valid codeword

Error codeword

CSE 461 University of Washington
Hamming Code

• Gives a method for constructing a code with a distance of 3
 • Uses $n = 2^k - k - 1$, e.g., $n=4$, $k=3$
 • Put check bits in positions p that are powers of 2, starting with position 1
 • Check bit in position p is parity of positions with a p term in their values

• Plus an easy way to correct [soon]
Hamming Code (2)

• Example: data=0101, 3 check bits
 • 7 bit code, check bit positions 1, 2, 4
 • Check 1 covers positions 1, 3, 5, 7
 • Check 2 covers positions 2, 3, 6, 7
 • Check 4 covers positions 4, 5, 6, 7
Hamming Code (3)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 & \rightarrow \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\[p_1 = 0 + 1 + 1 = 0, \quad p_2 = 0 + 0 + 1 = 1, \quad p_4 = 1 + 0 + 1 = 0\]
Hamming Code (4)

• To decode:
 • Recompute check bits (with parity sum including the check bit)
 • Arrange as a binary number
 • Value (syndrome) tells error position
 • Value of zero means no error
 • Otherwise, flip bit to correct
Hamming Code (5)

• Example, continued

\[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \]

\[p_1 = \quad p_2 = \]
\[p_4 = \]

Syndrome =
Data =
Hamming Code (6)

• Example, continued

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \]

\[p_1 = 0+0+1+1 = 0, \quad p_2 = 1+0+0+1 = 0, \]
\[p_4 = 0+1+0+1 = 0 \]

Syndrome = 000, no error
Data = 0 1 0 1
Hamming Code (7)

• Example, continued

\[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\end{array} \]

\[p_1 = \quad p_2 = \]

\[p_4 = \]

Syndrome =

Data =
Hamming Code (8)

• Example, continued

\[
\begin{array}{cccccccc}
\text{Data} & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\[p_1 = 0+0+1+1 = 0, \quad p_2 = 1+0+1+1 = 1, \]
\[p_4 = 0+1+1+1 = 1\]

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)
Other Error Correction Codes

• Codes used in practice are more involved than Hamming

• Convolutional codes (§3.2.3)
 • Take a stream of data and output a mix of the input bits
 • Makes each output bit less fragile
 • Decode using Viterbi algorithm (which can use bit confidence values)
Other Codes (2) – LDPC

• Low Density Parity Check (§3.2.3)
 • LDPC based on sparse matrices
 • Decoded iteratively using a belief propagation algorithm
 • State of the art today

• Invented by Robert Gallager in 1963 as part of his PhD thesis
 • Promptly forgotten until 1996 ...
Detection vs. Correction

• Which is better will depend on the pattern of errors. For example:
 • 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a bit error rate (BER) of 1 in 10000

- Which has less overhead?
 - It still depends! We need to know more about the errors
Detection vs. Correction (2)

Assume bit errors are random
 • Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
 • Need ~10 check bits per message
 • Overhead:

Error detection:
 • Need ~1 check bits per message plus 1000 bit retransmission
 • Overhead:
Detection vs. Correction (3)

Assume errors come in bursts of 100
 • Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
 • Need $\gg 100$ check bits per message
 • Overhead:

Error detection:
 • Need 32 check bits per message plus 1000 bit resend $2/1000$ of the time
 • Overhead:
Detection vs. Correction (4)

• Error correction:
 • Needed when errors are expected
 • Or when no time for retransmission

• Error detection:
 • More efficient when errors are not expected
 • And when errors are large when they do occur
Error Correction in Practice

• Heavily used in physical layer
 • LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE, power-line, ...
 • Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for residual errors

• Correction also used in the application layer
 • Called Forward Error Correction (FEC)
 • Normally with an erasure error model
 • E.g., Reed-Solomon (CDs, DVDs, etc.)