Where we are in the Course

- More fun in the Network Layer!
- We've covered packet forwarding
- Now we'll learn about routing

Application
Transport
Network
Link
Physical

Improving on the Spanning Tree

- Spanning tree provides basic connectivity
- e.g., some path $B \rightarrow C$

- Routing uses all links to find "best" paths
- e.g., use BC, BE, and CE

Perspective on Bandwidth Allocation

- Routing allocates network bandwidth adapting to failures; other mechanisms used at other timescales

Mechanism	Timescale / Adaptation
Load-sensitive routing	Seconds / Traffic hotspots
Routing	Minutes / Equipment failures
Traffic Engineering	Hours / Network load
Provisioning	Months / Network customers

Delivery Models

- Different routing used for different delivery models

Anycast
(§5.2.9)

Goals of Routing Algorithms

- We want several properties of any routing scheme:

Property	Meaning
Correctness	Finds paths that work
Efficient paths	Uses network bandwidth well
Fair paths	Doesn't starve any nodes
Fast convergence	Recovers quickly after changes
Scalability	Works well as network grows large

Rules of Routing Algorithms

- Decentralized, distributed setting
- All nodes are alike; no controller
- Nodes only know what they learn by exchanging messages with neighbors
- Nodes operate concurrently
- May be node/link/message failures

Topic

- Defining "best" paths with link costs
- These are shortest path routes

What are "Best" paths anyhow?

- Many possibilities:
- Latency, avoid circuitous paths
- Bandwidth, avoid slow links
- Money, avoid expensive links
- Hops, to reduce switching
- But only consider topology
- Ignore workload, e.g., hotspots

Shortest Paths

We'll approximate "best" by a cost function that captures the factors

- Often call lowest "shortest"

1. Assign each link a cost (distance)
2. Define best path between each pair of nodes as the path that has the lowest total cost (or is shortest)
3. Pick randomly to any break ties

Shortest Paths (2)

- Find the shortest path $\mathrm{A} \rightarrow \mathrm{E}$
- All links are bidirectional, with equal costs in each direction
- Can extend model to unequal costs if needed

Shortest Paths (3)

- $A B C E$ is a shortest path
- $\operatorname{dist}(\mathrm{ABCE})=4+2+1=7$
- This is less than:
$-\operatorname{dist}(\mathrm{ABE})=8$
$-\operatorname{dist}(A B F E)=9$
$-\operatorname{dist}(\mathrm{AE})=10$
$-\operatorname{dist}(\mathrm{ABCDE})=10$

Shortest Paths (4)

- Optimality property:
- Subpaths of shortest paths are also shortest paths
- $A B C E$ is a shortest path

Sink Trees

- Sink tree for a destination is the union of all shortest paths towards the destination
- Similarly source tree
- Find the sink tree for E

Sink Trees (2)

- Implications:
- Only need to use destination to follow shortest paths
- Each node only need to send to the next hop
- Forwarding table at a node

Topic

- How to compute shortest paths given the network topology
- With Dijkstra's algorithm

Edsger W. Dijkstra (1930-2002)

- Famous computer scientist
- Programming languages
- Distributed algorithms
- Program verification
- Dijkstra's algorithm, 1969
- Single-source shortest paths, given network with non-negative link costs

Dijkstra’s Algorithm

Algorithm:

- Mark all nodes tentative, set distances from source to 0 (zero) for source, and ∞ (infinity) for all other nodes
- While tentative nodes remain:
- Extract N , a node with lowest distance
- Add link to N to the shortest path tree
- Relax the distances of neighbors of N by lowering any better distance estimates

Dijkstra’s Algorithm (2)

- Initialization

Dijkstra's Algorithm (3)

- Relax around A

Dijkstra's Algorithm (4)

- Relax around B

Dijkstra's Algorithm (5)

- Relax around C

Dijkstra's Algorithm (6)

- Relax around G (say)

Dijkstra’s Algorithm (7)

- Relax around F (say)

Dijkstra's Algorithm (8)

- Relax around E

Dijkstra's Algorithm (9)

- Relax around D

Dijkstra's Algorithm (10)

- Finally, H ... done

Dijkstra Comments

- Finds shortest paths in order of increasing distance from source
- Leverages optimality property
- Runtime depends on efficiency of extracting min-cost node
- Superlinear in network size (grows fast)
- Gives complete source/sink tree
- More than needed for forwarding!
- But requires complete topology

Topic

- How to compute shortest paths in a distributed network
- The Distance Vector (DV) approach

Distance Vector Routing

- Simple, early routing approach
- Used in ARPANET, and RIP
- One of two main approaches to routing
- Distributed version of Bellman-Ford
- Works, but very slow convergence after some failures
- Link-state algorithms are now typically used in practice
- More involved, better behavior

Distance Vector Setting

Each node computes its forwarding table in a distributed setting:

1. Nodes know only the cost to their neighbors; not the topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost

Distance Vector Algorithm

Each node maintains a vector of distances (and next hops) to all destinations

1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the shortest distance heard, after adding cost of neighbor link

- Use the best neighbor for forwarding

Distance Vector (2)

- Consider from the point of view of node A
- Can only talk to nodes B and E

Initial \longrightarrow
vector

To	Cost
A	0
B	∞
C	∞
D	∞
E	∞
F	∞
G	∞
H	∞

Distance Vector (3)

- First exchange with B, E; learn best 1-hop routes

To	$\begin{array}{\|c\|} \hline \text { B } \\ \text { says } \end{array}$	$\begin{gathered} \mathrm{E} \\ \text { says } \end{gathered}$	$\begin{gathered} \text { B } \\ +4 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ +10 \end{gathered}$	\rightarrow	A's Cost	A's Next
A	∞	∞	∞	∞		0	--
B	0	∞	4	∞		4	B
C	∞	∞	∞	∞		∞	--
D	∞	∞	∞	∞		∞	--
E	∞	0	∞	10		10	E
F	∞	∞	∞	∞		∞	--
G	∞	∞	∞	∞		∞	--
H	∞	∞	∞	∞		∞	--

Distance Vector (4)

- Second exchange; learn best 2-hop routes

To	B says	E says			
A	4	10			
B	0	4			
C	2	1			
D	∞	2			
E	4	0			
F	3	2			
G	3	∞			
H	∞	∞	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	20				
4	14				
6	11				
∞	12				
8	10				
7	12				
7	∞				
∞	∞	$\quad \rightarrow$	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
12	E				
8	B				
7	B				
7	B				
∞	--				

Distance Vector (4)

- Third exchange; learn best 3-hop routes

To	$\begin{gathered} \mathrm{B} \\ \text { says } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { says } \end{gathered}$	$\begin{gathered} B \\ +4 \end{gathered}$	$\begin{gathered} E \\ +10 \end{gathered}$		A's Cost	$\begin{aligned} & \text { A's } \\ & \text { Vext } \end{aligned}$
A	4	8	8	18		0	--
B	0	3	4	13		4	B
C	2	1	6	11		6	B
D	4	2	8	12		8	B
E	3	0	7	10		7	B
F	3	2	7	12		7	B
G	3	6	7	16		7	B
H	5	4	9	14		9	B

Distance Vector (5)

- Subsequent exchanges; converged

To	B says	E says			
A	4	7			
B	0	3			
C	2	1			
D	4	2			
E	3	0			
F	3	2			
G	3	6			
H	5	4	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	17				
4	13				
6	11				
8	12				
7	10				
7	12				
7	16				
9	14	\quad	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
8	B				
8	B				
7	B				
7	B				
9	B				

Distance Vector Dynamics

- Adding routes:
- News travels one hop per exchange
- Removing routes
- When a node fails, no more exchanges, other nodes forget
- But partitions (unreachable nodes in divided network) are a problem
- "Count to infinity" scenario

DV Dynamics (2)

- Good news travels quickly, bad news slowly (inferred)

Desired convergence

"Count to infinity" scenario

DV Dynamics (3)

- Various heuristics to address
- e.g., "Split horizon, poison reverse" (Don't send route back to where you learned it from.)
- But none are very effective
- Link state now favored in practice
- Except when very resource-limited

