
Computer	Networks	
Shyam	Gollakota	

CSE	461	University	of	Washington	 49	

Topic	
•  Some	bits	will	be	received	in	error	due	

to	noise.	What	can	we	do?	
–  Detect	errors	with	codes	»	
–  Correct	errors	with	codes	»	
–  Retransmit	lost	frames	

•  Reliability	is	a	concern	that	cuts	
across	the	layers	–	we’ll	see	it	again	

Later	

Problem	–	Noise	may	flip	received	bits		

CSE	461	University	of	Washington	 50	

Signal	
0	 0	 0	 0	

1	1	 1	
0	

0	 0	 0	 0	
1	1	 1	

0	

0	 0	 0	 0	
1	1	 1	

0	

Slightly	
Noisy	

Very	
noisy	

CSE	461	University	of	Washington	 51	

Approach	–	Add	Redundancy		
•  Error	detec>on	codes	

–  	Add	check	bits	to	the	message	bits	to	let	
some	errors	be	detected	

•  Error	correc>on	codes	
–  Add	more	check	bits	to	let	some	errors	be	
corrected	

•  Key	issue	is	now	to	structure	the	code	
to	detect	many	errors	with	few	check	
bits	and	modest	computa>on	

CSE	461	University	of	Washington	 52	

Mo>va>ng	Example	
•  A	simple	code	to	handle	errors:	

–  Send	two	copies!	Error	if	different.	
	

•  How	good	is	this	code?	
–  How	many	errors	can	it	detect/correct?	
–  How	many	errors	will	make	it	fail?	
				

CSE	461	University	of	Washington	 53	

Mo>va>ng	Example	(2)	
•  We	want	to	handle	more	errors	
with	less	overhead	
– Will	look	at	be[er	codes;	they	are	
applied	mathema>cs	

–  But,	they	can’t	handle	all	errors	
–  And	they	focus	on	accidental	errors	
(will	look	at	secure	hashes	later)	

CSE	461	University	of	Washington	 54	

Using	Error	Codes	
•  Codeword	consists	of	D	data	plus	R	

check	bits	(=systema>c	block	code)	

•  Sender:		
–  Compute	R	check	bits	based	on	the	D	
data	bits;	send	the	codeword	of	D+R	bits	

D	 R=fn(D)	
Data	bits	 Check	bits	

CSE	461	University	of	Washington	 55	

Using	Error	Codes	(2)	
•  Receiver:			
–  Receive	D+R	bits	with	unknown	errors	
–  Recompute	R	check	bits	based	on	the	
D	data	bits;	error	if	R	doesn’t	match	R’	

D	 R’	
Data	bits	 Check	bits	

R=fn(D)	
=?	

CSE	461	University	of	Washington	 56	

Intui>on	for	Error	Codes	
•  For	D	data	bits,	R	check	bits:	

	
	
	

•  Randomly	chosen	codeword	is	unlikely	
to	be	correct;	overhead	is	low	

All	
codewords	
Correct	

codewords	

CSE	461	University	of	Washington	 57	

R.W.	Hamming	(1915-1998)	
•  Much	early	work	on	codes:	
–  “Error	Detec>ng	and	Error	Correc>ng	
Codes”,	BSTJ,	1950	

•  See	also:	
–  “You	and	Your	Research”,	1986	

Source:	IEEE	GHN,	©	2009	IEEE	

CSE	461	University	of	Washington	 58	

Hamming	Distance	
•  Distance	is	the	number	of	bit	flips	
needed	to	change	D1	to	D2	

•  Hamming	distance	of	a	code	is	the	
minimum	distance	between	any	
pair	of	codewords	

CSE	461	University	of	Washington	 59	

Hamming	Distance	(2)	
•  Error	detec>on:	
–  For	a	code	of	distance	d+1,	up	to	d	
errors	will	always	be	detected	

CSE	461	University	of	Washington	 60	

Hamming	Distance	(3)	
•  Error	correc>on:	
–  For	a	code	of	distance	2d+1,	up	to	d	
errors	can	always	be	corrected	by	
mapping	to	the	closest	codeword	

CSE	461	University	of	Washington	 61	

Topic	
•  Some	bits	may	be	received	in	error	

due	to	noise.	How	do	we	detect	this?	
–  Parity	»	
–  Checksums	»	
–  CRCs	»	

•  Detec>on	will	let	us	fix	the	error,	for	
example,	by	retransmission	(later).	

CSE	461	University	of	Washington	 62	

Simple	Error	Detec>on	–	Parity	Bit	
•  Take	D	data	bits,	add	1	check	bit	
that	is	the	sum	of	the	D	bits	
–  Sum	is	modulo	2	or	XOR	

CSE	461	University	of	Washington	 63	

Parity	Bit	(2)	
•  How	well	does	parity	work?	
– What	is	the	distance	of	the	code?	
		
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
		

CSE	461	University	of	Washington	 64	

Checksums	
•  Idea:	sum	up	data	in	N-bit	words	
– Widely	used	in,	e.g.,	TCP/IP/UDP	

•  Stronger	protec>on	than	parity	

1500	bytes	 16	bits	

CSE	461	University	of	Washington	 65	

Internet	Checksum	
•  Sum	is	defined	in	1s	complement	
arithme>c	(must	add	back	carries)	
–  And	it’s	the	nega>ve	sum	

•  “The	checksum	field	is	the	16	bit	one's	
complement	of	the	one's	complement	
sum	of	all	16	bit	words	…”	–	RFC	791	

CSE	461	University	of	Washington	 66	

Internet	Checksum	(2)	
Sending:	
1. Arrange	data	in	16-bit	words	

2. Put	zero	in	checksum	posi>on,	add	
	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

CSE	461	University	of	Washington	 67	

Internet	Checksum	(3)	
Sending:	
1. Arrange	data	in	16-bit	words	
2. Put	zero	in	checksum	posi>on,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

CSE	461	University	of	Washington	 68	

Internet	Checksum	(4)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

CSE	461	University	of	Washington	 69	

Internet	Checksum	(5)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

CSE	461	University	of	Washington	 70	

Internet	Checksum	(6)	
•  How	well	does	the	checksum	work?	
– What	is	the	distance	of	the	code?	
–  How	many	errors	will	it	detect/
correct?	

		

•  What	about	larger	errors?	
		

CSE	461	University	of	Washington	 71	

Cyclic	Redundancy	Check	(CRC)	
•  Even	stronger	protec>on	
–  Given	n	data	bits,	generate	k	check	
bits	such	that	the	n+k	bits	are	evenly	
divisible	by	a	generator	C		

•  Example	with	numbers:	
–  n	=	302,	k	=	one	digit,	C	=	3	

CSE	461	University	of	Washington	 72	

CRCs	(2)	
•  The	catch:	
–  It’s	based	on	mathema>cs	of	finite	
fields,	in	which	“numbers”	
represent	polynomials	

–  e.g,	10011010	is	x7	+	x4	+	x3	+	x1		

•  What	this	means:	
– We	work	with	binary	values	and	
operate	using	modulo	2	arithme>c	

CSE	461	University	of	Washington	 73	

CRCs	(3)	
•  Send	Procedure:	
1.  Extend	the	n	data	bits	with	k	zeros	
2.  Divide	by	the	generator	value	C	
3.  Keep	remainder,	ignore	quo>ent	
4.  Adjust	k	check	bits	by	remainder	

•  Receive	Procedure:	
1.  Divide	and	check	for	zero	remainder	

CRCs	(4)	

CSE	461	University	of	Washington	 74	

Data	bits:	
1101011111	

	

Check	bits:	
C(x)=x4+x1+1	
C	=	10011	

k	=	4		
	

1	0	0	1	1	1		1		0		1		0		1		1		1		1		1		

CRCs	(5)	

CSE	461	University	of	Washington	 75	

CSE	461	University	of	Washington	 76	

CRCs	(6)	
•  Protec>on	depend	on	generator	
–  Standard	CRC-32	is	10000010	
01100000	10001110	110110111	

		

•  Proper>es:	
–  HD=4,	detects	up	to	triple	bit	errors	
–  Also	odd	number	of	errors		
–  And	bursts	of	up	to	k	bits	in	error	
–  Not	vulnerable	to	systema>c	errors	
like	checksums	

CSE	461	University	of	Washington	 77	

Error	Detec>on	in	Prac>ce	
•  CRCs	are	widely	used	on	links	
– Ethernet,	802.11,	ADSL,	Cable	…	

•  Checksum	used	in	Internet		
–  IP,	TCP,	UDP	…	but	it	is	weak	

•  Parity	
–  Is	li[le	used	

CSE	461	University	of	Washington	 78	

Topic	
•  Two	strategies	to	handle	errors:	
1.  Detect	errors	and	retransmit	frame	

(Automa>c	Repeat	reQuest,	ARQ)	

2.  Correct	errors	with	an	error								
correc>ng	code	

Done	this	

CSE	461	University	of	Washington	 79	

Context	on	Reliability	
•  Where	in	the	stack	should	we			
place	reliability	func>ons?	

Physical	
Link	

Network	
Transport	
Applica>on	

CSE	461	University	of	Washington	 80	

Context	on	Reliability	(2)	
•  Everywhere!	It	is	a	key	issue	
–  Different	layers	contribute	differently	

Physical	
Link	

Network	
Transport	
Applica>on	

Recover	ac>ons	
(correctness)	

Mask	errors	
(performance	op>miza>on)	

CSE	461	University	of	Washington	 81	

ARQ	
•  ARQ	open	used	when	errors	are	
common	or	must	be	corrected	
–  E.g.,	WiFi,	and	TCP	(later)	

•  Rules	at	sender	and	receiver:	
–  Receiver	automa>cally	acknowledges	
correct	frames	with	an	ACK	

–  Sender	automa>cally	resends	aper	a	
>meout,	un>l	an	ACK	is	received	

CSE	461	University	of	Washington	 82	

ARQ	(2)	
•  Normal	opera>on	(no	loss)	

Frame	

ACK	
Timeout	 Time	

Sender	 Receiver	

CSE	461	University	of	Washington	 83	

ARQ	(3)	
•  Loss	and	retransmission	

Frame	

Timeout	 Time	

Sender	 Receiver	

Frame	

ACK	

X	

CSE	461	University	of	Washington	 84	

So	What’s	Tricky	About	ARQ?	
•  Two	non-trivial	issues:	
–  How	long	to	set	the	>meout?	»	
–  How	to	avoid	accep>ng	duplicate	
frames	as	new	frames	»	

•  Want	performance	in	the	common	
case	and	correctness	always	

CSE	461	University	of	Washington	 85	

Timeouts	
•  Timeout	should	be:	
–  Not	too	big	(link	goes	idle)	
–  Not	too	small	(spurious	resend)	

•  Fairly	easy	on	a	LAN	
–  Clear	worst	case,	li[le	varia>on	

•  Fairly	difficult	over	the	Internet	
– Much	varia>on,	no	obvious	bound	
– We’ll	revisit	this	with	TCP	(later)	

CSE	461	University	of	Washington	 86	

Duplicates	
•  What	happens	if	an	ACK	is	lost?	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 87	

Duplicates	(2)	
•  What	happens	if	an	ACK	is	lost?	

Frame	

ACK	

X	

Frame	

ACK	Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	

CSE	461	University	of	Washington	 88	

Duplicates	(3)	
•  Or	the	>meout	is	early?	

ACK	

Frame	

Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 89	

Duplicates	(4)	
•  Or	the	>meout	is	early?	

Frame	

ACK	

Frame	

ACK	

Timeout	

Sender	 Receiver	

New	
Frame?	

New		
Frame??	

CSE	461	University	of	Washington	 90	

Sequence	Numbers	
•  Frames	and	ACKs	must	both	carry	
sequence	numbers	for	correctness	

•  To	dis>nguish	the	current	frame	
from	the	next	one,	a	single	bit	(two	
numbers)	is	sufficient	
–  Called	Stop-and-Wait	

CSE	461	University	of	Washington	 91	

Stop-and-Wait	
•  In	the	normal	case:	

Time	

Sender	 Receiver	

CSE	461	University	of	Washington	 92	

Stop-and-Wait	(2)	
•  In	the	normal	case:	

Frame	0	

ACK	0	Timeout	 Time	

Sender	 Receiver	

Frame	1	

ACK	1	

CSE	461	University	of	Washington	 93	

Stop-and-Wait	(3)	
•  With	ACK	loss:	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 94	

Stop-and-Wait	(4)	
•  With	ACK	loss:	

Frame	0	

ACK	0	

X	

Frame	0	

ACK	0	Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a		
Resend!	

CSE	461	University	of	Washington	 95	

Stop-and-Wait	(5)	
•  With	early	>meout:	

ACK	0	

Frame	0	

Timeout	

Sender	 Receiver	

New	
Frame?	

CSE	461	University	of	Washington	 96	

Stop-and-Wait	(6)	
•  With	early	>meout:	

Frame	0	

ACK	0	

Frame	0	

ACK	0	

Timeout	

Sender	 Receiver	

New	
Frame?	

It’s	a	
Resend	

OK	…	

CSE	461	University	of	Washington	 97	

Limita>on	of	Stop-and-Wait	
•  It	allows	only	a	single	frame	to	be	
outstanding	from	the	sender:	
–  Good	for	LAN,	not	efficient	for	high	BD	

•  Ex:	R=1	Mbps,	D	=	50	ms	
–  How	many	frames/sec?	If	R=10	Mbps?	

CSE	461	University	of	Washington	 98	

Sliding	Window	
•  Generaliza>on	of	stop-and-wait	
–  Allows	W	frames	to	be	outstanding	
–  Can	send	W	frames	per	RTT	(=2D)	

–  Various	op>ons	for	numbering	
frames/ACKs	and	handling	loss	
•  Will	look	at	along	with	TCP	(later)	

