Topic

- Filling in the gaps we need to make for IP forwarding work in practice
 - Getting IP addresses (DHCP) »
 - Mapping IP to link addresses (ARP) »

Getting IP Addresses

- Problem:
 - A node wakes up for the first time ...
 - What is its IP address? What's the IP address of its router? Etc.
 - At least Ethernet address is on NIC

Getting IP Addresses (2)

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
- A protocol for automatically configuring addresses (DHCP) »
 - Shifts burden from users to IT folk

DHCP

- DHCP (Dynamic Host Configuration Protocol), from 1993, widely used
- It leases IP address to nodes
- Provides other parameters too
 - Network prefix
 - Address of local router
 - DNS server, time server, etc.

DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

DHCP Addressing

- Bootstrap issue:
 - How does node send a message to DHCP server before it is configured?
- Answer:
 - Node sends <u>broadcast</u> messages that delivered to all nodes on the network
 - Broadcast address is all 1s
 - IP (32 bit): 255.255.255.255
 - Ethernet (48 bit): ff:ff:ff:ff:ff:ff

DHCP Messages

DHCP Messages (2)

DHCP Messages (3)

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK
- Protocol also supports replicated servers for reliability

Sending an IP Packet

- Problem:
 - A node needs Link layer addresses to send a frame over the local link
 - How does it get the destination link address from a destination IP address?

ARP (Address Resolution Protocol)

 Node uses to map a local IP address to its Link layer addresses

ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target
 IP to identify itself
 - Uses broadcast to reach all nodes

ARP Messages

ARP Messages (2)

Discovery Protocols

- Help nodes find each other
 - There are more of them!
 - E.g., zeroconf, Bonjour
- Often involve broadcast
 - Since nodes aren't introduced
 - Very handy glue

Other Aspects of Forwarding

• It's not all about addresses ...

◄ 32 Bits				
Version	IHL	Differentiated Services	Total length	
Identification			D M F F F Fragment offset	
Time to live Protocol		Protocol	Header checksum	
Source address				
Destination address				
Options (0 or more words)				
Payload (e.g., TCP segment)				

Other Aspects (2)

- Decrement TTL value
 - Protects against loops
- Checks header checksum
 To add reliability
- Fragment large packets
 Split to fit it on next link
- Send congestion signals
 - Warns hosts of congestion
- Generates error messages
 - To help mange network
- Handle various options

Coming later

Topic

- How do we connect networks with different maximum packet sizes?
 - Need to split up packets, or discover the largest size to use

Packet Size Problem

- Different networks have different maximum packet sizes
 - Or MTU (Maximum Transmission Unit)
 - E.g., Ethernet 1.5K, WiFi 2.3K
- Prefer large packets for efficiency
 - But what size is too large?
 - Difficult because node does not know complete network path

Packet Size Solutions

- Fragmentation (now)
 - Split up large packets in the network if they are too big to send
 - Classic method, dated
- Discovery (next)
 - Find the largest packet that fits on the network path and use it
 - IP uses today instead of fragmentation

IPv4 Fragmentation

- Routers fragment packets that are too large to forward
- Receiving host reassembles to reduce load on routers

IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

◄ 32 Bits →				
Version	IHL	Differentiated Services	Total length	
Identification			D M F F	Fragment offset
Time	Time to live Protocol		Header checksum	
Source address				
Destination address				
Options (0 or more words)				
Payload (e.g., TCP segment)				

IPv4 Fragmentation Procedure

- Routers split a packet that is too large:
 - Typically break into large pieces
 - Copy IP header to pieces
 - Adjust length on pieces
 - Set offset to indicate position
 - Set MF (More Fragments) on all pieces except last
- Receiving hosts reassembles the pieces:
 - Identification field links pieces together, MF tells receiver when it has all pieces

IPv4 Fragmentation (2)

IPv4 Fragmentation (3)

IPv4 Fragmentation (4)

- It works!
 - Allows repeated fragmentation
- But fragmentation is undesirable
 - More work for routers, hosts
 - Tends to magnify loss rate
 - Security vulnerabilities too

Path MTU Discovery

- Discover the MTU that will fit
 - So we can avoid fragmentation
 - The method in use today
- Host tests path with large packet
 - Routers provide feedback if too large; they tell host what size would have fit

Path MTU Discovery (3)

Path MTU Discovery (4)

- Process may seem involved
 - But usually quick to find right size
- Path MTU depends on the path and so can change over time
 - Search is ongoing
- Implemented with ICMP (next)
 - Set DF (Don't Fragment) bit in IP header to get feedback messages

Topic

- What happens when something goes wrong during forwarding?
 - Need to be able to find the problem

Internet Control Message Protocol

- ICMP is a companion protocol to IP
 - They are implemented together
 - Sits on top of IP (IP Protocol=1)
- Provides error report and testing
 - Error is at router while forwarding
 - Also testing that hosts can use

ICMP Errors

- When router encounters an error while forwarding:
 - It sends an ICMP error report back to the IP source address
 - It discards the problematic packet; host needs to rectify

ICMP Message Format

- Each ICMP message has a Type, Code, and Checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

ICMP Message Format (2)

- Each ICMP message has a Type, Code, and Checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

Portion of offending packet, starting with its IP header

Example ICMP Messages

Name	Type / Code	Usage
Dest. Unreachable (Net or Host)	3 / 0 or 1	Lack of connectivity
Dest. Unreachable (Fragment)	3 / 4	Path MTU Discovery
Time Exceeded (Transit)	11 / 0	Traceroute
Echo Request or Reply	8 or 0 / 0	Ping

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply

Traceroute

- IP header contains TTL (Time to live) field
 - Decremented every router hop, with ICMP error if it hits zero
 - Protects against forwarding loops

Version	IHL	Differentiated Services	Total length		
dentification			D M F F	Fragment offset	
Time	to live	Protocol	Header checksum		
Source address					
Destination address					
Options (0 or more words)					

Traceroute (2)

- Traceroute repurposes TTL and ICMP functionality
 - Sends probe packets increasing TTL starting from 1
 - ICMP errors identify routers on the path

Topic

• IP version 6, the future of IPv4 that is now (still) being deployed

Internet Growth

- At least a billion
 Internet hosts and growing ...
- And we're using 32-bit addresses!

Internet Domain Survey Host Count

The End of New IPv4 Addresses

 Now running on leftover blocks held by the regional registries; much tighter allocation policies

End of the world ? 12/21/12?

IP Version 6 to the Rescue

- Effort started by the IETF in 1994
 - Much larger addresses (128 bits)
 - Many sundry improvements
- Became an IETF standard in 1998
 - Nothing much happened for a decade
 - Hampered by deployment issues, and a lack of adoption incentives
 - Big push ~2011 as exhaustion looms

IPv6 Deployment

IPv6

- Features large addresses
 - 128 bits, most of header
- New notation
 - 8 groups of 4 hex digits (16 bits)
 - Omit leading zeros, groups of zeros

Ex: 2001:0db8:0000:0000:0000:ff00:0042:8329 →

IPv6 (2)

- Lots of other, smaller changes
 - Streamlined header processing
 - Flow label to group of packets
 - Better fit with "advanced" features (mobility, multicasting, security)

IPv6 Transition

- The Big Problem:
 - How to deploy IPv6?
 - Fundamentally incompatible with IPv4
- Dozens of approaches proposed
 - Dual stack (speak IPv4 and IPv6)
 - Translators (convert packets)
 - Tunnels (carry IPv6 over IPv4) »

Tunneling

- Native IPv6 islands connected via IPv4
 - Tunnel carries IPv6 packets across IPv4 network

Tunneling (2)

• Tunnel acts as a single link across IPv4 network

Tunneling (3)

• Tunnel acts as a single link across IPv4 network

Difficulty is to set up tunnel endpoints and routing

Topic

- What is NAT (Network Address Translation)? How does it work?
 - NAT is widely used at the edges of the network, e.g., homes

Layering Review

- Remember how layering is meant to work?
 - "Routers don't look beyond the IP header." Well ...

Middleboxes

- Sit "inside the network" but perform "more than IP" processing on packets to add new functionality
 - NAT box, Firewall / Intrusion Detection System

Middleboxes (2)

- Advantages
 - A possible rapid deployment path when there is no other option
 - Control over many hosts (IT)
- Disadvantages
 - Breaking layering interferes with connectivity; strange side effects
 - Poor vantage point for many tasks

NAT (Network Address Translation) Box

- NAT box connects an internal network to an external network
 - Many internal hosts are connected using few external addresses
 - Middlebox that "translates addresses"
- Motivated by IP address scarcity
 Controversial at first, now accepted

NAT (2)

- Common scenario:
 - Home computers use "private" IP addresses
 - NAT (in AP/firewall) connects home to ISP using a single external IP address

How NAT Works

- Keeps an internal/external table
 - Typically uses IP address + TCP port
 - This is address and port translation

What host thinks	What ISP thinks
Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500
192.168.1.13 : 1234	44.25.80.3 : 1501
192.168.2.20 : 1234	44.25.80.3 : 1502

 Need ports to make mapping 1-1 since there are fewer external IPs

How NAT Works (2)

- Internal \rightarrow External:
 - Look up and rewrite Source IP/port

How NAT Works (3)

- External \rightarrow Internal
 - Look up and rewrite Destination IP/port

How NAT Works (4)

- Need to enter translations in the table for it to work
 - Create external name when host makes a TCP connection

NAT Downsides

- Connectivity has been broken!
 - Can only send incoming packets after an outgoing connection is set up
 - Difficult to run servers or peer-to-peer apps (Skype) at home
- Doesn't work so well when there are no connections (UDP apps)
- Breaks apps that unwisely expose their IP addresses (FTP)

NAT Upsides

- Relieves much IP address pressure
 Many home hosts behind NATs
- Easy to deploy
 - Rapidly, and by you alone
- Useful functionality
 - Firewall, helps with privacy
- Kinks will get worked out eventually

 "NAT Traversal" for incoming traffic

