Hidden Terminals

- Nodes A and C are **hidden terminals** when sending to B
 - Can’t hear each other (to coordinate) yet collide at B
 - We want to avoid the inefficiency of collisions
Exposed Terminals

- B and C are **exposed terminals** when sending to A and D
 - Can hear each other yet don’t collide at receivers A and D
 - We want to send concurrently to increase performance
Nodes Can’t Hear While Sending

- With wires, detecting collisions (and aborting) lowers their cost
- More wasted time with wireless
Possible Solution: MACA

- MACA uses a short handshake instead of CSMA (Karn, 1990)
 - 802.11 uses a refinement of MACA (later)

- Protocol rules:
 1. A sender node transmits a RTS (Request-To-Send, with frame length)
 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
 3. Sender transmits the frame while nodes hearing the CTS stay silent
 - Collisions on the RTS/CTS are still possible, but less likely
MACA – Hidden Terminals

• $A \rightarrow B$ with hidden terminal C

1. A sends RTS, to B
MACA – Hidden Terminals (2)

• A \rightarrow B with hidden terminal C

2. B sends CTS, to A, and C too
MACA – Hidden Terminals (3)

- A\rightarrowB with hidden terminal C
 2. B sends CTS, to A, and C too

![Diagram showing the transmission between A, B, C, and D with CTS and RTS signals, and an alert for hidden terminal C.]

Alert!
MACA – Hidden Terminals (4)

- A \rightarrow B with hidden terminal C

 3. A sends frame while C defers
MACA – Exposed Terminals

- B→A, C→D as exposed terminals
 - B and C send RTS to A and D
MACA – Exposed Terminals (2)

- B→A, C→D as exposed terminals
 - A and D send CTS to B and C
MACA – Exposed Terminals (3)

- B → A, C → D as exposed terminals
 - A and D send CTS to B and C
MACA – Exposed Terminals (4)

- B→A, C→D as exposed terminals
 - A and D send CTS to B and C
802.11, or WiFi

- Very popular wireless LAN started in the 1990s
- Clients get connectivity from a (wired) AP (Access Point)
- It’s a multi-access problem 😊
- Various flavors have been developed over time
 - Faster, more features
802.11 Physical Layer

• Uses 20/40 MHz channels on ISM bands
 – 802.11b/g/n on 2.4 GHz
 – 802.11 a/n on 5 GHz

• OFDM modulation (except legacy 802.11b)
 – Different amplitudes/phases for varying SNRs
 – Rates from 6 to 54 Mbps plus error correction
 – 802.11n uses multiple antennas; see “802.11 with Multiple Antennas for Dummies”
802.11 CSMA/CA for Multiple Access

- Sender avoids collisions by inserting small random gaps
 - E.g., when both B and C send, C picks a smaller gap, goes first
The Future of 802.11 (Guess)

- Likely ubiquitous for Internet connectivity
 - Greater diversity, from low- to high-end devices
- Innovation in physical layer drives speed
 - And power-efficient operation too
- More seamless integration of connectivity
 - Too manual now, and limited (e.g., device-to-device)
Issues with Random Multiple Access

• CSMA is good under low load:
 – Grants immediate access
 – Little overhead (few collisions)

• But not so good under high load:
 – High overhead (expect collisions)
 – Access time varies (lucky/unlucky)

• We want to do better under load!
Turn-Taking Multiple Access Protocols

- They define an order in which nodes get a chance to send
 - Or pass, if no traffic at present

- We just need some ordering ...
 - E.g., Token Ring
 - E.g., node addresses
Token Ring

- Arrange nodes in a ring; token rotates “permission to send” to each node in turn
Turn-Taking Advantages

• Fixed overhead with no collisions
 – More efficient under load

• Regular chance to send with no unlucky nodes
 – Predictable service, easily extended to guaranteed quality of service
Turn-Taking Disadvantages

• Complexity
 – More things that can go wrong than random access protocols!
 • E.g., what if the token is lost?
 – Higher overhead at low load
Turn-Taking in Practice

- Regularly tried as an improvement offering better service
 - E.g., qualities of service

- But random multiple access is hard to beat
 - Simple, and usually good enough
 - Scales from few to many nodes
Topic

• How do we connect nodes with a **switch** instead of multiple access
 – Uses multiple links/wires
 – Basis of modern (switched) Ethernet
Switched Ethernet

- Hosts are wired to Ethernet switches with twisted pair
 - Switch serves to connect the hosts
 - Wires usually run to a closet
What’s in the box?

- Remember from protocol layers:

 - Hub, or repeater
 - Switch
 - Router

All look like this:
Inside a Hub

• All ports are wired together; more convenient and reliable than a single shared wire
Inside a Switch

- Uses frame addresses to connect input port to the right output port; multiple frames may be switched in parallel
Inside a Switch (2)

- Port may be used for both input and output (full-duplex)
 - Just send, no multiple access protocol
Inside a Switch (3)

- Need buffers for multiple inputs to send to one output
Inside a Switch (4)

- Sustained overload will fill buffer and lead to frame loss
Advantages of Switches

• Switches and hubs have replaced the shared cable of classic Ethernet
 – Convenient to run wires to one location
 – More reliable; wire cut is not a single point of failure that is hard to find

• Switches offer scalable performance
 – E.g., 100 Mbps per port instead of 100 Mbps for all nodes of shared cable / hub