
CSE	461	University	of	Washington	 1	

Hamming	Code	
•  Gives	a	method	for	construc=ng	a	
code	with	a	distance	of	3	
–  Uses	n	=	2k	–	k	–	1,	e.g.,	n=4,	k=3	
–  Put	check	bits	in	posi=ons	p	that	are	
powers	of	2,	star=ng	with	posi=on	1	

–  Check	bit	in	posi=on	p	is	parity	of	
posi=ons	with	a	p	term	in	their	values	

•  Plus	an	easy	way		to	correct	[soon]	



CSE	461	University	of	Washington	 2	

Hamming	Code	(2)	
•  Example:	data=0101,	3	check	bits	
–  7	bit	code,	check	bit	posi=ons	1,	2,	4	
–  Check	1	covers	posi=ons	1,	3,	5,	7	
–  Check	2	covers	posi=ons	2,	3,	6,	7	
–  Check	4	covers	posi=ons	4,	5,	6,	7	

																			_		_		_		_		_		_		_	
	 1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 3	

Hamming	Code	(3)	
•  Example:	data=0101,	3	check	bits	
–  7	bit	code,	check	bit	posi=ons	1,	2,	4	
–  Check	1	covers	posi=ons	1,	3,	5,	7	
–  Check	2	covers	posi=ons	2,	3,	6,	7	
–  Check	4	covers	posi=ons	4,	5,	6,	7	

																		0		1		0		0		1		0		1	
	
p1=	0+1+1	=	0,		p2=	0+0+1	=	1,		p4=	1+0+1	=	0	

1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 4	

Hamming	Code	(4)	
•  To	decode:	
–  Recompute	check	bits	(with	parity	
sum	including	the	check	bit)	

–  Arrange	as	a	binary	number	
–  Value	(syndrome)	tells	error	posi=on	
–  Value	of	zero	means	no	error	
–  Otherwise,	flip	bit	to	correct	



CSE	461	University	of	Washington	 5	

Hamming	Code	(5)	
•  Example,	con=nued	

														0		1		0		0		1		0		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 6	

Hamming	Code	(6)	
•  Example,	con=nued	

														0		1		0		0		1		0		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+0+1	=	0,	
p4=	0+1+0+1	=	0	
	

Syndrome	=	000,	no	error	
Data	=	0	1	0	1	

1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 7	

Hamming	Code	(7)	
•  Example,	con=nued	

														0		1		0		0		1		1		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 8	

Hamming	Code	(8)	
•  Example,	con=nued	

														0		1		0		0		1		1		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+1+1	=	1,	
p4=	0+1+1+1	=	1	
	

Syndrome	=	1	1	0,	flip	posi=on	6	
Data	=	0	1	0	1	(correct	a^er	flip!)	

1			2			3			4			5			6			7	



CSE	461	University	of	Washington	 9	

Other	Error	Correc=on	Codes	
•  Codes	used	in	prac=ce	are	much	
more	involved	than	Hamming	

•  Convolu=onal	codes	(§3.2.3)	
–  Take	a	stream	of	data	and	output	a	
mix	of	the	recent	input	bits	

– Makes	each	output	bit	less	fragile	
–  Decode	using	Viterbi	algorithm		
(which	can	use	bit	confidence	values)	



CSE	461	University	of	Washington	 10	

Other	Codes	(2)	–	LDPC		
•  Low	Density	Parity	Check	(§3.2.3)	
–  LDPC	based	on	sparse	matrices	
–  Decoded	itera=vely	using	a	belief	
propaga=on	algorithm	

–  State	of	the	art	today	
•  Invented	by	Robert	Gallager	in		
1963	as	part	of	his	PhD	thesis	
–  Promptly	forgofen	un=l	1996	…		

Source:	IEEE	GHN,	©	2009	IEEE	



CSE	461	University	of	Washington	 11	

Detec=on	vs.	Correc=on	
•  Which	is	befer	will	depend	on	the	
pafern	of	errors.	For	example:	
–  1000	bit	messages	with	a	bit	error	rate	
(BER)	of	1	in	10000	

•  Which	has	less	overhead?	



CSE	461	University	of	Washington	 12	

Detec=on	vs.	Correc=on	
•  Which	is	befer	will	depend	on	the	
pafern	of	errors.	For	example:	
–  1000	bit	messages	with	a	bit	error	rate	
(BER)	of	1	in	10000	

•  Which	has	less	overhead?	
–  It	s=ll	depends!	We	need	to	know	
more	about	the	errors	



CSE	461	University	of	Washington	 13	

Detec=on	vs.	Correc=on	(2)	
1.  Assume	bit	errors	are	random	

–  Messages	have	0	or	maybe	1	error	

•  Error	correc=on:		
–  Need	~10	check	bits	per	message	
–  Overhead:	

•  Error	detec=on:		
–  Need	~1	check	bits	per	message	plus	1000	bit	

retransmission	1/10	of	the	=me	
–  Overhead:	



CSE	461	University	of	Washington	 14	

Detec=on	vs.	Correc=on	(3)	
2.  Assume	errors	come	in	bursts	of	100	

–  Only	1	or	2	messages	in	1000	have	errors	

•  Error	correc=on:		
–  Need	>>100	check	bits	per	message	
–  Overhead:	

•  Error	detec=on:		
–  Need	32?	check	bits	per	message	plus	1000	

bit	resend	2/1000	of	the	=me	
–  Overhead:	



CSE	461	University	of	Washington	 15	

Detec=on	vs.	Correc=on	(4)	
•  Error	correc=on:		
– Needed	when	errors	are	expected	
– Or	when	no	=me	for	retransmission	

•  Error	detec=on:		
– More	efficient	when	errors	are	not	
expected	

– And	when	errors	are	large	when	
they	do	occur	



CSE	461	University	of	Washington	 16	

Error	Correc=on	in	Prac=ce	
•  Heavily	used	in	physical	layer	

–  LDPC	is	the	future,	used	for	demanding	links	
like	802.11,	DVB,	WiMAX,	LTE,	power-line,	…	

–  Convolu=onal	codes	widely	used	in	prac=ce	

•  Error	detec=on	(w/	retransmission)	is	used	in	
the	link	layer	and	above	for	residual	errors	

•  Correc=on	also	used	in	the	applica=on	layer	
–  Called	Forward	Error	Correc=on	(FEC)	
–  Normally	with	an	erasure	error	model	
–  E.g.,	Reed-Solomon	(CDs,	DVDs,	etc.)	



Topic	
•  Mul=plexing	is	the	network	word	
for	the	sharing	of	a	resource	

•  Classic	scenario	is	sharing	a	link	
among	different	users	
–  Time	Division	Mul=plexing	(TDM)	»	
–  Frequency	Division	Mul=plexing	
(FDM)	»	

CSE	461	University	of	Washington	 17	



Time	Division	Mul=plexing	(TDM)	

•  Users	take	turns	on	a	fixed	schedule	

CSE	461	University	of	Washington	 18	

2	 2	 2	 2	



Frequency	Division	Mul=plexing	(FDM)	
•  Put	different	users	on	different	frequency	bands	

CSE	461	University	of	Washington	 19	

Overall	FDM	channel	



CSE	461	University	of	Washington	 20	

TDM	versus	FDM	
•  In	TDM	a	user	sends	at	a	high	rate	a	
frac=on	of	the	=me;	in	FDM,	a	user	
sends	at	a	low	rate	all	the	=me		

Rate	

Time	
FDM	

TDM	



CSE	461	University	of	Washington	 21	

TDM	versus	FDM	(2)	
•  In	TDM	a	user	sends	at	a	high	rate	a	
frac=on	of	the	=me;	in	FDM,	a	user	
sends	at	a	low	rate	all	the	=me		

Rate	

Time	
FDM	

TDM	



CSE	461	University	of	Washington	 22	

TDM/FDM	Usage	
•  Sta=cally	divide	a	resource	
–  Suited	for	con=nuous	traffic,	fixed	
number	of	users	

•  Widely	used	in	telecommunica=ons	
–  TV	and	radio	sta=ons	(FDM)	
–  GSM	(2G	cellular)	allocates	calls	using	
TDM	within	FDM	



CSE	461	University	of	Washington	 23	

Mul=plexing	Network	Traffic	
•  Network	traffic	is	bursty	

–  ON/OFF	sources		
–  Load	varies	greatly	over	=me	

Rate	

Time	
Rate	

Time	



CSE	461	University	of	Washington	 24	

Mul=plexing	Network	Traffic	(2)	
•  Network	traffic	is	bursty	
–  Inefficient	to	always	allocate	user		
their	ON	needs	with	TDM/FDM	

Rate	

Time	
Rate	

Time	

R	

R	



Mul=plexing	Network	Traffic	(3)	
•  Mul=ple	access	schemes	mul=plex	users	according	to	
their	demands	–	for	gains	of	sta=s=cal	mul=plexing	

CSE	461	University	of	Washington	 25	

Rate	

Time	
Rate	

Time	

Rate	

Time	

R	

R	

R’<2R	

Two	users,	each	need	R	 Together	they	need	R’	<	2R	



CSE	461	University	of	Washington	 26	

Mul=ple	Access	
•  We	will	look	at	two	kinds	of	mul=ple	

access	protocols	
1.  Randomized.	Nodes	randomize	their	

resource	access	afempts	
–  Good	for	low	load	situa=ons	

2.  Conten=on-free.	Nodes	order	their	
resource	access	afempts	
–  Good	for	high	load	or	guaranteed									

quality	of	service	situa=ons	



CSE	461	University	of	Washington	 27	

Topic	
•  How	do	nodes	share	a	single	link?	
Who	sends	when,	e.g.,	in	WiFI?	
–  Explore	with	a	simple	model	

	
•  Assume	no-one	is	in	charge;	this	is	
a	distributed	system	



CSE	461	University	of	Washington	 28	

Topic	(2)	
•  We	will	explore	random	mul=ple	
access	control	(MAC)	protocols	
–  This	is	the	basis	for	classic	Ethernet	
–  Remember:	data	traffic	is	bursty	

Zzzz..	Busy!	 Ho	hum	



CSE	461	University	of	Washington	 29	

ALOHA	Network	
•  Seminal	computer	network	
connec=ng	the	Hawaiian								
islands	in	the	late	1960s	
– When	should	nodes	send?	
–  A	new	protocol	was	devised	
by	Norm	Abramson	…	

Hawaii	



CSE	461	University	of	Washington	 30	

ALOHA	Protocol	
•  Simple	idea:	
–  Node	just	sends	when	it	has	traffic.		
–  If	there	was	a	collision	(no	ACK	
received)	then	wait	a	random	=me	
and	resend	

•  That’s	it!	



CSE	461	University	of	Washington	 31	

ALOHA	Protocol	(2)	
•  Some	frames	will	
be	lost,	but	many	
may	get	through…	

•  Good	idea?	

		



CSE	461	University	of	Washington	 32	

ALOHA	Protocol	(3)	
•  Simple,	decentralized	protocol	that	
works	well	under	low	load!	

•  Not	efficient	under	high	load	
–  Analysis	shows	at	most	18%	efficiency	
–  Improvement:	divide	=me	into	slots	
and	efficiency	goes	up	to	36%	

•  We’ll	look	at	other	improvements	



CSE	461	University	of	Washington	 33	

Classic	Ethernet		
•  ALOHA	inspired	Bob	Metcalfe	to	
invent	Ethernet	for	LANs	in	1973	
–  Nodes	share	10	Mbps	coaxial	cable	
–  Hugely	popular	in	1980s,	1990s	

:	©	2009	IEEE	



CSE	461	University	of	Washington	 34	

CSMA	(Carrier	Sense	Mul=ple	Access)	
•  Improve	ALOHA	by	listening	for	
ac=vity	before	we	send	(Doh!)	
–  Can	do	easily	with	wires,	not	wireless	

•  So	does	this	eliminate	collisions?	
– Why	or	why	not?	



CSE	461	University	of	Washington	 35	

CSMA	(2)	
•  S=ll	possible	to	listen	and	hear	
nothing	when	another	node	is	
sending	because	of	delay	



CSE	461	University	of	Washington	 36	

CSMA	(3)	
•  CSMA	is	a	good	defense	against	
collisions	only	when	BD	is	small	

X	



CSE	461	University	of	Washington	 37	

CSMA/CD	(with	Collision	Detec=on)	
•  Can	reduce	the	cost	of	collisions	by	
detec=ng	them	and	abor=ng	(Jam)	
the	rest	of	the	frame	=me	
–  Again,	we	can	do	this	with	wires	

X	X	X	X	X	X	X	X	Jam!	 Jam!	



CSE	461	University	of	Washington	 38	

CSMA/CD	Complica=ons	
•  Want	everyone	who	collides	to	
know	that	it	happened	
–  Time	window	in	which	a	node	may	
hear	of	a	collision	is	2D	seconds	

X	



CSE	461	University	of	Washington	 39	

CSMA/CD	Complica=ons	(2)	
•  Impose	a	minimum	frame	size	that	
lasts	for	2D	seconds	
–  So	node	can’t	finish	before	collision	
–  Ethernet	minimum	frame	is	64	bytes	

X	



CSE	461	University	of	Washington	 40	

CSMA	“Persistence”	
•  What	should	a	node	do	if	another	
node	is	sending?	

		

	
•  Idea:	Wait	un=l	it	is	done,	and	send		

What	now?	



CSE	461	University	of	Washington	 41	

CSMA	“Persistence”	(2)	
•  Problem	is	that	mul=ple	wai=ng	
nodes	will	queue	up	then	collide	
– More	load,	more	of	a	problem	

Now!	 Now!	Uh	oh	



CSE	461	University	of	Washington	 42	

CSMA	“Persistence”	(3)	
•  Intui=on	for	a	befer	solu=on	
–  If	there	are	N	queued	senders,	we	
want	each	to	send	next	with	
probability	1/N	

Send	p=½	Whew	Send	p=½	



CSE	461	University	of	Washington	 43	

Binary	Exponen=al	Backoff	(BEB)	
•  Cleverly	es=mates	the	probability	

–  1st	collision,	wait	0	or	1	frame	=mes	
–  2nd	collision,	wait	from	0	to	3	=mes	
–  3rd	collision,	wait	from	0	to	7	=mes	…	

•  BEB	doubles	interval	for	each	
successive	collision	
–  Quickly	gets	large	enough	to	work	
–  Very	efficient	in	prac=ce	



Classic	Ethernet,	or	IEEE	802.3	
•  Most	popular	LAN	of	the	1980s,	1990s	
–  10	Mbps	over	shared	coaxial	cable,	with	baseband	signals	
– Mul=ple	access	with	“1-persistent	CSMA/CD	with	BEB”	

CSE	461	University	of	Washington	 44	



Ethernet	Frame	Format	
•  Has	addresses	to	iden=fy	the	sender	and	receiver	
•  CRC-32	for	error	detec=on;	no	ACKs	or	retransmission	
•  Start	of	frame	iden=fied	with	physical	layer	preamble	

CSE	461	University	of	Washington	 45	

Packet	from	Network	layer	(IP)	



CSE	461	University	of	Washington	 46	

Modern	Ethernet	
•  Based	on	switches,	not	mul=ple	
access,	but	s=ll	called	Ethernet	
– We’ll	get	to	it	in	a	later	segment	

Switch	

Twisted	pair	
Switch	ports	


