Where we are in the Course

e Starting the Application Layer!

— Builds distributed “network
services” (DNS, Web) on Transport
services

Application

Transport

Network
Link
Physical

CSE 461 University of Washington

Recall

* Application layer protocols are
often part of an “app”

— But don’t need a GUI, e.g., DNS

User-level abp
HTTP

0S TCP

|P
(NIC) 802.11

CSE 461 University of Washington

Recall (2)

* Application layer messages are
often split over multiple packets

— Or may be aggregated in a packet ...

HTTP

v
802.11|IP|TCP | HTTP
802.11|IP [TCP | HTTP

802.11|IP|TCP | HTTP

CSE 461 University of Washington

Topic

* The DNS (Domain Name System)
— Human-readable host names, and more
— Part 1: the distributed namespace

www.uw.edu?| [128.94.155.135 |

Network —%

CSE 461 University of Washington

Names and Addresses

* Names are higher-level identifiers for resources
* Addresses are lower-level locators for resources
— Multiple levels, e.g. full name - email - IP address - Ethernet address

* Resolution (or lookup) is mapping a name to an address

Name, e.g. Wﬂ x\(/—ﬂl Address, e.g.
“Andy Tanenbaum,” Lookup [“Vrijie Universiteit, Amsterdam”
or “flits.cs.vu.nl” > JF or IPv4 “130.30.27.38”

Directory

CSE 461 University of Washington

Before the DNS — HOSTS.TXT

* Directory was a file HOSTS.TXT
regularly retrieved for all hosts from
a central machine at the NIC
(Network Information Center)

 Names were initially flat, became
hierarchical (e.g., lcs.mit.edu) ~85

* Neither manageable nor efficient
as the ARPANET grew ...

CSE 461 University of Washington

DNS

A naming service to map between host
names and their IP addresses (and more)

— www.uwa.edu.au = 130.95.128.140

Goals:
— Easy to manage (esp. with multiple parties)
— Efficient (good performance, few resources)

Approach:

— Distributed directory based on a hierarchical
namespace

— Automated protocol to tie pieces together

DNS Namespace

a7

* Hierarchical, starting from “.” (dot, typically omitted)

= Generic —— > | Countries -]
aero com edu gov museum org net --- au ip uk us nl .-
| /\ /\ /\
cisco washington acm ieee edu ac co vu oce
/\ /\ | /\
eng cs eng jack jill uwa keio nec cs law
/\
robot cs csl filts fluit

CSE 461 University of Washington

TLDs (Top-Level Domains)

* Run by ICANN (Internet Corp. for Assigned Names and Numbers)
— Starting in ‘98; naming is financial, political, and international ©

22+ generic TLDs
— Initially .com, .edu, .gov., .mil, .org, .net
— Added .aero, .museum, etc. from '01 through .xxx in 11
— Different TLDs have different usage policies

* ~250 country code TLDs
— Two letters, e.g., “.au”, plus international characters since 2010
— Widely commercialized, e.g., .tv (Tuvalu)
— Many domain hacks, e.g., instagr.am (Armenia), goo.gl (Greenland)

CSE 461 University of Washington

DNS Zones

* A zone is a contiguous portion of the namespace

X

e Generic = | Countries

cisco)| \washington edu
) Z
csl
A zone

r°b°t Delegatlon

CSE 461 University of Washington

DNS Zones (2)

* Zones are the basis for distribution
— EDU Registrar administers .edu
— UW administers washington.edu
— CS&E administers cs.washington.edu

e Each zone has a nameserver to
contact for information about it
— Zone must include contacts for

delegations, e.g., .edu knows
nameserver for washington.edu

CSE 461 University of Washington

11

DNS Resolution

* DNS protocol lets a host resolve
any host name (domain) to IP
address

* |f unknown, can start with the root
nameserver and work down zones

* Let’s see an example first ...

CSE 461 University of Washington

12

DNS Resolution (2)

 flits.cs.vu.nl resolves robot.cs.washington.edu

E Root name server
(a.root-servers.net)

Edu name server
1: query

Y.
% @ (a.edu-servers.net
> f ' m
ﬁInI 10: robot.cs.washington.edu | *
ington eqy

_ cs.vu.nl
Originator () 9.
name server -

=

name server

UWCS
name server

CSE 461 University of Washington 13

Ilterative vs. Recursive Queries

* Recursive query

— Nameserver completes resolution
and returns the final answer

— E.g., flits 2 local nameserver

* [terative query

— Nameserver returns the answer or
who to contact next for the answer

— E.g., local nameserver = all others

CSE 461 University of Washington

14

Iterative vs. Recursive Queries (2)

* Recursive query

— Lets server offload client burden
(simple resolver) for manageability

— Lets server cache over a pool of
clients for better performance

* [terative query
— Lets server “file and forget”
— Easy to build high load servers

CSE 461 University of Washington

15

Caching

* Resolution latency should be low
— Adds delay to web browsing
* Cache query/responses to answer

future queries immediately
— Including partial (iterative) answers
— Responses carry a TTL for caching

query —— out
W <o z
response

Nameserver

Caching (2)

 flits.cs.vu.nl now resolves eng.washington.edu
— And previous resolutions cut out most of the process

| know the server for}
washington.edu!

1: query s (] 2: query S
i < - < -
= 4 eng.washington.edu : eng.washington.edu
Local nameserver UW nameserver
(for cs.vu.nl) (for washington.edu)

CSE 461 University of Washington 17

Local Nameservers

* Local nameservers typically run by
IT (enterprise, ISP)
— But may be your host or AP
— Or alternatives e.g., Google public DNS

* Clients need to be able to contact
their local nameservers

— Typically configured via DHCP

CSE 461 University of Washington

18

Root Nameservers

* Root (dot) is served by 13 server names
— a.root-servers.net to m.root-servers.net
— All nameservers need root IP addresses
— Handled via configuration file (named.ca)

* There are >250 distributed server instances

— Highly reachable, reliable service

— Most servers are reached by IP anycast
(Multiple locations advertise same IP! Routes
take client to the closest one. See §5.2.9)

— Servers are IPv4 and IPv6 reachable

CSE 461 University of Washington

19

Root Server Deployment

o

Legend
' Multiple instances

Single i

Source: http://www.root-servers.org.

- Imagery ©2013 NASA, TerraMetrics - Terms of Use

CSE 461 University of Washington

DNS Protocol

* Query and response messages
— Built on UDP messages, port 53

— ARQ for reliability; server is stateless!
— Messages linked by a 16-bit ID field

Client

Query

Server

ID=0x1234

\>

/ Time
ID=0x1234

CSE 461 University of Washington

Response

21

DNS Protocol (2)

* Service reliability via replicas
— Run multiple nameservers for domain
— Return the list; clients use one answer
— Helps distribute load too

NS for uw.edu?] Use A, Bo

7!

A

CSE 461 University of Washington

rC

ac

¢

22

DNS Protocol (3)

* Security is a major issue
— Compromise redirects to wrong site!
— Not part of initial protocols ..

 DNSSEC (DNS Security Extensions)

— Long under development, now partially
deployed. We'll look at it later

Um, secu rity??}

CSE 461 University of Washington

23

Topic

* Performance of HTTP
— Parallel and persistent connections
— Caching for content reuse

t
T reques

Network

—

=

CSE 461 University of Washington

PLT (Page Load Time)

* PLT is the key measure of web
performance

— From click until user sees page
— Small increases in PLT decrease sales

* PLT depends on many factors

— Structure of page/content
— HTTP (and TCP!) protocol
— Network RTT and bandwidth

CSE 461 University of Washington

25

Early Performance

Client Server

e HTTP/1.0 uses one TCP connection
to fetch one web resource

— Made HTTP very easy to build N
— But gave fairly poor PLT ... |

CSE 461 University of Washington 26

Early Performance (2)

e HTTP/1.0 used one TCP connection
to fetch one web resource

— Made HTTP very easy to build N
— But gave fairly poor PLT... |

CSE 461 University of Washington

Connection setup

e

HTTP
[Request

— HTTP
Response

27

Early Performance (3)

* Many reasons why PLT is larger than
necessary

— Sequential request/responses, even
when to different servers

— Multiple TCP connection setups to
the same server

— Multiple TCP slow-start phases

* Network is not used effectively
— Worse with many small resources / page

CSE 461 University of Washington

Time

Connection setup

B A

HTTP
[Request

— HTTP
Response

28

Ways to Decrease PLT

1. Reduce content size for transfer
— Smaller images, gzip

2. Change HTTP to make better
use of available bandwidth

3. Change HTTP to avoid repeated This
transfers of the same content time
— Caching, and proxies

4. Relocate content to reduce RTT ter

— CDNs [later]

CSE 461 University of Washington

29

Parallel Connections

* One simple way to reduce PLT

— Browser runs multiple (8, say) HTTP
instances in parallel

— Server is unchanged; already handled
concurrent requests for many clients

* How does this help?
— Single HTTP wasn’t using network much ...

— So parallel connections aren’t slowed much
— Pulls in completion time of last fetch

CSE 461 University of Washington

30

Persistent Connections

* Parallel connections compete with
each other for network resources

— 1 parallel client = 8 sequential clients?
— Exacerbates network bursts, and loss

* Persistent connection alternative
— Make 1 TCP connection to 1 server
— Use it for multiple HTTP requests

CSE 461 University of Washington

31

Persistent Connections (2)

Client Server Client Server Client Server

Time

Persistent +Pipelining

CSE 461 University of Washington 32

Time

Persistent Connections (3)

Connection setup

e

HTTP
[Request

— HTTP
Response

One request per connection

CSE 461 University of Washington

Sequential requests

per connection

Pipelined
requests =]

Pi

pelined requests
per connection

Persistent Connections (4)

* Widely used as part of HTTP/1.1
— Supports optional pipelining

— PLT benefits depending on page
structure, but easy on network

* |ssues with persistent connections

— How long to keep TCP connection?
— Can it be slower? (Yes. But why?)

CSE 461 University of Washington

34

Web Caching

* Users often revisit web pages
— Big win from reusing local copy!
— This is caching

o Local copies
|. Network

* Key question:
— When is it OK to reuse local copy?

CSE 461 University of Washington

35

Web Caching (2)

* Locally determine copy is still valid
— Based on expiry information such as
“Expires” header from server
— Or use a heuristic to guess (cacheable,
freshly valid, not modified recently)
— Content is then available right away

’ Cache Network —g

Le 7/ Server

CSE 461 University of Washington

36

Web Caching (3)

* Revalidate copy with server
— Based on timestamp of copy such as
“Last-Modified” header from server
— Or based on content of copy such as
“Etag” header from server
— Content is available after 1 RTT

CSE 461 University of Washington

Server

37

e Putting the pieces together:

Web Caching (4)

1: Request

2: Check expiry

[
_—

3: Conditional GET

Y

4a: Not modified

Y

Program

A

A

‘ Cache

CSE 461 University of Washington

Web browser

4b: Response

Web server

38

Web Proxies

* Place intermediary between pool of
clients and external web servers

— Benefits for clients include greater
caching and security checking

— Organizational access policies too!

* Proxy caching

— Clients benefit from a larger, shared
cache

— Benefits limited by secure and dynamic
content, as well as “long tail”

CSE 461 University of Washington

39

Clients

CSE 461 University of Washington

Web Proxies (2)

* Clients contact proxy; proxy contacts server

— Browser cache

Organization

-~

——

Proxy cache

Near client

&@\\é

Servers

Far from client

40

mod pagespeed

e (Observation:

— The way pages are written affects
how quickly they load

— Many books on best practices for
page authors and developers

* Key idea:

— Have server re-write (compile) pages
to help them load quickly!

— mod_pagespeed is an example

CSE 461 University of Washington

41

mod pagespeed (2)

* Apache server extension
— Software installed with web server

— Rewrites pages “on the fly” with rules
based on best practices

* Example rewrite rules:
— Minify Javascript
— Flatten multi-level CSS files
— Resize images for client
— And much more (100s of specific rules)

CSE 461 University of Washington

42

