
Computer Networks
The Socket API (Project 1) & Traceroute (HW 1)

(§1.3.4, 6.1.2-6.1.4)

Originally By David Wetherall (djw@), Modified By Qian Yan and Esther Jang (ether@)

About Me

▶ Esther Jang
▶ 3rd year PhD student
▶ Information and Communications

Technology for Development
▶ Community Cellular Network

deployments
▶ My goal is to get better at teaching.

Computer Networks 2

Traceroute

▶ Apps talk to other apps with no real idea of what is inside
the network

▶ This is good! But you may be curious …

▶ Peeking inside the Network with Traceroute

host

appapp

host

???

Traceroute

4

Traceroute

▶ Probes successive hops to find network
path

▶ TTL: time-to-live

Computer Networks 5

. .

.

Local
Host

Remote
Host

Traceroute

Computer Networks 6

. .

.

Local
Host Remote

Host

1
hop

2
hops 3

hops
N-1
hops N

hops

Using Traceroute

Computer Networks 7

Using Traceroute (2)

▶ ISP names and places are educated guesses

Computer Networks 8

. .

.

My
computer

www.uw.edu
(www1.cac.washington.edu)

tde
3 hops

Telefonica
4 hops

Level3
6 hops

pnw-gigapop
 1 hop

 UW
3 hops

NYC San Jose Seattle

UW

Home
1 hop

100 ms
180 ms

>200 ms

Client-server interaction

9

Network-Application Interface

▶ Defines how apps use the network

▶ Application Layer APIs

▶ Lets apps talk to each other

▶ hides the other layers of the network

Computer Networks
10

host

appapp

host

network

Project 1

▶ Simple Client

▶ Send requests to server

▶ Wait for a reply

▶ Extract the information from the reply

▶ Continue…

▶ Simple Server

▶ Server handles the Client requests

▶ Multi-threaded

Computer Networks 11

Project 1

▶ This is the basis for many apps!

▶ File transfer: send name, get file (§6.1.4)

▶ Web browsing: send URL, get page

▶ Echo: send message, get it back

▶ Let’s see how to write this app …

Computer Networks 12

Socket API (Generalized)

▶ Simple application-layer abstractions (APIs) to use the network

▶ The network service API used to write all Internet applications

▶ Part of all major OSes and languages; originally Berkeley
(Unix) ~1983

▶ Two kinds of sockets

▶ Streams (TCP): reliably send a stream of bytes

▶ Datagrams (UDP): unreliably send separate messages

Computer Networks 13

Socket API (2)

▶ Sockets let apps attach to the local network at
different ports

▶ Ports are used by OS to distinguish services/apps
using internet

Computer Networks 14

Socket
Port 1

Socket
Port 2

Socket API (3)

Computer Networks 15

Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket

LISTEN
Announce willingness to accept connections; (give
queue size)

ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Using Sockets

Computer Networks 16

Client (host 1) Server (host 2)Time

Using Sockets (2)

Computer Networks 17

Client (host 1) Server (host 2)Time

request

reply

disconnect

1 1

2

3

44

connect

Using Sockets (3)

Computer Networks 18

Client (host 1) Server (host 2)Time

5: connect*

1: socket 2: (bind)
1: socket

3: (listen)

9: send

6: recv*

4: accept*

7: send
8: recv*

10: close 10: close

request

reply

disconnect

connect

*= call blocks

Client Program (outline)

socket() // make socket
getaddrinfo() // server and port name

// www.example.com:80
connect() // connect to server [block]
…
send() // send request
recv() // await reply [block]
… // do something with data!
close() // done, disconnect

Computer Networks 19

Server Program (outline)

socket() // make socket
getaddrinfo() // for port on this host
bind() // associate port with socket
listen() // prepare to accept connections
accept() // wait for a connection [block]
…
recv() // wait for request
…
send() // send the reply
close() // eventually disconnect

Computer Networks 20

Java Examples with Socket & ServerSocket

▶ Server

Computer Networks 21

• http://cs.lmu.edu/~ray/notes/javanetexampl
es/

• https://docs.oracle.com/javase/tutorial/net
working/datagrams/clientServer.html

• https://docs.oracle.com/javase/tutorial/net
working/sockets/index.html

▶ Client

ServerSocket listener = new ServerSocket(9090);
 try {
 while (true) {
 Socket socket = listener.accept();
 try {
 socket.getInputStream();
 } finally {
 socket.close();
 }
 }
 }
 finally {
 listener.close();
 }

Socket socket = new Socket(server, 9090);
out =
 new PrintWriter(socket.getOutputStream(), true);
socket.close();

http://cs.lmu.edu/~ray/notes/javanetexamples/
http://cs.lmu.edu/~ray/notes/javanetexamples/
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html

END

Computer Networks 22

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th
Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle

River, New Jersey

