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Traceroute

▶ Apps talk to other apps with no real idea of what is inside 
the network

▶ This is good! But you may be curious …

▶ Peeking inside the Network with Traceroute
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Traceroute

▶ Probes successive hops to find network 
path

▶ TTL: time-to-live
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Using Traceroute
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Using Traceroute (2)

▶ ISP names and places are educated guesses
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Client-server interaction
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Network-Application Interface

▶ Defines how apps use the network

▶ Application Layer APIs

▶ Lets apps talk to each other

▶ hides the other layers of the network
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Project 1

▶ Simple Client

▶ Send requests to server

▶ Wait for a reply

▶ Extract the information from the reply

▶ Continue…

▶ Simple Server

▶ Server handles the Client requests

▶ Multi-threaded
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Project 1

▶ This is the basis for many apps!

▶ File transfer: send name, get file (§6.1.4)

▶ Web browsing: send URL, get page

▶ Echo: send message, get it back

▶ Let’s see how to write this app …
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Socket API (Generalized)

▶ Simple application-layer abstractions (APIs) to use the network

▶ The network service API used to write all Internet applications

▶ Part of all major OSes and languages; originally Berkeley 
(Unix) ~1983

▶ Two kinds of sockets

▶ Streams (TCP): reliably send a stream of bytes

▶ Datagrams (UDP): unreliably send separate messages
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Socket API (2)

▶ Sockets let apps attach to the local network at 
different ports

▶ Ports are used by OS to distinguish services/apps 
using internet
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Socket API (3)
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Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket

LISTEN
Announce willingness to accept connections; (give 
queue size)

ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html


Using Sockets
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Using Sockets (2)
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Using Sockets (3)
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Client Program (outline)

socket() // make socket
getaddrinfo() // server and port name

// www.example.com:80
connect() // connect to server [block]
…
send() // send request
recv() // await reply [block]
… // do something with data!
close() // done, disconnect
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Server Program (outline)

socket() // make socket
getaddrinfo() // for port on this host
bind() // associate port with socket
listen() // prepare to accept connections
accept() // wait for a connection [block]
…
recv() // wait for request
…
send() // send the reply
close() // eventually disconnect
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Java Examples with Socket & ServerSocket

▶ Server
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• http://cs.lmu.edu/~ray/notes/javanetexampl
es/

• https://docs.oracle.com/javase/tutorial/net
working/datagrams/clientServer.html

• https://docs.oracle.com/javase/tutorial/net
working/sockets/index.html

▶ Client

ServerSocket listener = new ServerSocket(9090);
        try {
            while (true) {
                Socket socket = listener.accept();
                try {
                    socket.getInputStream(); 
                } finally {
                    socket.close();
                }
            }
        }
        finally {
            listener.close();
        } 

Socket socket = new Socket(server, 9090);
out = 
        new PrintWriter(socket.getOutputStream(), true);
socket.close();

http://cs.lmu.edu/~ray/notes/javanetexamples/
http://cs.lmu.edu/~ray/notes/javanetexamples/
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
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