
David	Wetherall		(djw@uw.edu)
Professor	of	Computer	Science	&	Engineering

Computer	Networks

The	Socket	API	
(§1.3.4,	6.1.2-6.1.4)



Computer	Networks 2

Network-Application	Interface
• Defines	how	apps	use	the	network
– Lets	apps	talk	to	each	other	via	hosts;	
hides	the	details	of	the	network

host

appapp

host



Computer	Networks 3

Motivating	Application
• Simple	client-server	setup

request

reply



Computer	Networks 4

Motivating	Application	(2)
• Simple	client-server	setup

– Client	app	sends	a	request	to	server	app
– Server	app	returns	a	(longer)	reply

• This	is	the	basis	for	many	apps!
– File	transfer:	send	name,	get	file	(§6.1.4)
– Web	browsing:	send	URL,	get	page
– Echo:	send	message,	get	it	back

• Let’s	see	how	to	write	this	app	…



Computer	Networks 5

Socket	API
• Simple	abstraction	to	use	the	network

– The	network	service	API	used	to	write	all	
Internet	applications

– Part	of	all	major	OSes and	languages;	
originally	Berkeley	(Unix)	~1983

• Supports	two	kinds	of	network	services
– Streams:	reliably	send	a	stream	of	bytes	»
– Datagrams:	unreliably	send	separate	

messages.	(Ignore	for	now.)



Computer	Networks 6

Socket	API	(2)
• Sockets let	apps	attach	to	the	

local	network	at	different	ports

Socket,
Port	#1

Socket,
Port	#2



Socket	API	(3)

Computer	Networks 7

Primitive Meaning
SOCKET Create	a	new	communication	endpoint
BIND Associate	a	local	address	with	a	socket
LISTEN Announce	willingness	to	accept	connections;	give	queue	size
ACCEPT Passively	establish	an	incoming	connection
CONNECT Actively	attempt	to	establish	a	connection
SEND Send	some	data	over	the	connection
RECEIVE Receive	some	data	from	the	connection
CLOSE Release	the	connection



Computer	Networks 8

Using	Sockets
Client	(host	1) Server	(host	2)Time



Computer	Networks 9

Using	Sockets	(2)
Client	(host	1) Server	(host	2)Time

request

reply

disconnect

1 1

2

3

44

connect



Computer	Networks 10

Using	Sockets	(3)
Client	(host	1) Server	(host	2)Time

5:	connect*

1:	socket 2:	bind
1:	socket

3:	listen

9:	send

6:	recv*

4:	accept*

7:	send
8:	recv*

10:	close 10:	close

request

reply

disconnect

connect

*=	call	blocks



Computer	Networks 11

Client	Program	(outline)
socket() //	make	socket
getaddrinfo() //	server	and	port	name

//	www.example.com:80
connect() //	connect	to	server	[block]
…
send() //	send	request
recv() //	await	reply	[block]
… //	do	something	with	data!
close() //	done,	disconnect



Computer	Networks 12

Server	Program	(outline)
socket() //	make	socket
getaddrinfo() //	for	port	on	this	host
bind() //	associate	port	with	socket
listen() //	prepare	to	accept	connections
accept() //	wait	for	a	connection	[block]
…
recv() //	wait	for	request
…
send() //	send	the	reply
close() //	eventually	disconnect



Computer	Networks 13

Example
Python:	https://docs.python.org/2/library/socket.html#example

Java:	http://docs.oracle.com/javase/tutorial/networking/sockets/readingWriting.html

C:	https://vcansimplify.wordpress.com/2013/03/14/c-socket-tutorial-echo-server/



END

©	2013	D.	Wetherall
Slide	material	from:	TANENBAUM,	ANDREW	S.;	WETHERALL,	DAVID	J.,	COMPUTER	NETWORKS,	5th	Edition,	©	2011.	

Electronically	reproduced	by	permission	of	Pearson	Education,	Inc.,	Upper	Saddle	River,	New	Jersey

Computer	Networks 14


