
CSE	461:
Introduction	to	Computer	
Communication	Networks

Chunjong	Park

Reliable	Data	Transfer

• A	sends	a	packet	to	B

• Ideally,	the	packet	should	arrive	at	B

• But	A	does	not	know	whether	B	receives	it
• How	could	B	tell	A	that	the	packet	is	arrived	
at	B?

Host BHost A

Pkt

Reliable	Data	Transfer:	ACK

• A	sends	a	packet	to	B

• The	packet	arrives	at	B

• B	tells	A	that	the	it	receives	the	packet

• A	sends	out	the	next	packet

Host BHost A

Pkt

ACK

Reliable	Data	Transfer:	Packet	loss

• But	what	if	a	packet	or	an	ACK	is	lost?

• A	can’t	wait	for	an	ACK	forever.

Host BHost A

Pkt

ACK

Pkt

Reliable	Data	Transfer:	Timeout

• A	only	waits	for	a	certain	period	of	time

• When	timeout,	A	resends	the	packet

Host BHost A

timeout
resend pkt

Pkt

ACK

Pkt

Premature	Timeout
Host BHost A

timeout

Pkt

ACK

Pkt

ACK

Host BHost A

timeout

Pkt

ACK

Pkt

ACK

Pkt

ACK	for	which	pkt?

Sequence	#
Host BHost A

timeout

Pkt0

ACK0

Pkt0

ACK0

Host BHost A

timeout

Pkt0

ACK0

Pkt0

ACK0

ACK0	for	Pkt0
Sending	 Pkt1

Pkt1

ACK0	for	Pkt0
is	already	received.
Ignored

Stop-and-wait
Host BHost A

Pkt0

ACK0

• A	sender	sends	only	a	single	packet	before	
it	receives	the	corresponding	ACK

• Only	needs	0/1	for	sequence	number
• Just	needs	to	distinguish	two	consecutive	pkts

• Physical	link	is	underutilized!

Pkt1

ACK1

Pkt0

ACK0

Stop-and-wait

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Borrowed	from	Kurose’s	slides

• R	=	1	Gbps link,	RTT	=	15	ms prop.	delay,	L	=	8000	bit	packet

Pipelined	protocols	(Sliding	Window)
pipelining: sender	allows	multiple,	“in-flight”,	yet-
to-be-acknowledged	pkts

• range	of	sequence	numbers	must	be	increased
• buffering	at	sender	and/or	receiver

vtwo	generic	forms	of	pipelined	protocols:	go-Back-N,	
selective	repeat

Borrowed	from	Kurose’s	slides

Sliding	Window:	Sender
send_base nextseqnum

Borrowed	from	Kurose’s	slides

send_base nextseqnum

send_base nextseqnum

Sliding	Window:	Increased	Utilization	

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=
Borrowed	from	Kurose’s	slides

• R	=	1	Gbps link,	RTT	=	15	ms prop.	delay,	L	=	8000	bit	packet

Sliding	Window:	Selective	Repeat

Borrowed	from	Kurose’s	slides

Selective	Repeat

data	from	above:
vif	next	available	seq	#	in	window,	send	
pkt

timeout(n):
vresend	pkt	n,	restart	timer

ACK(n) in	[sendbase,sendbase+N]:
vmark	pkt	n	as	received
vif	n	smallest	unACKed	pkt,	advance	
window	base	to	next	unACKed	seq	#	

sender
pkt n in [rcvbase, rcvbase+N-1]

v send ACK(n)
v out-of-order: buffer
v in-order: deliver (also deliver

buffered, in-order pkts), advance
window to next not-yet-received
pkt

pkt n in [rcvbase-N,rcvbase-1]

v ACK(n)
otherwise:
v ignore

receiver

Borrowed	from	Kurose’s	slides

Selective	Repeat	in	Action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?

Selective	Repeat	in	Action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

0 1 2 3 4 5 6 7 8 9
Send pkt6,7,8,9(wait)

