Physical Layer

Where we are in the Course

We've reached rock bottom

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry analog signals
 - We want to send digital bits

Topics

- 1. Modulation schemes
 - Representing bits, noise
- 2. Properties of media
 - Wires, fiber optics, wireless, propagation
 - Bandwidth, attenuation, noise
- 3. Fundamental limits
 - Nyquist, Shannon

Modulation

• How can we send information across a link?

• This is the topic of modulation

A Simple Modulation

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Modulation (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Many Other Schemes

- Can use more signal levels
 - E.g., 4 levels is 2 bits per symbol
- Practical schemes are driven by engineering considerations
 - E.g., clock recovery »

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - 0000 → 11110, 0001 → 01001, 1110 → 11100, ... 1111 → 11101
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI)

Clock Recovery -4B/5B(2)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 0000 0001 Coded Bits:

Signal:

Clock Recovery – 4B/5B (3)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 0000 0001 Coded Bits: 1 1 1 0 1 1 1 1 0 0 1 0

Passband Modulation

- What we have seen so far is <u>baseband</u> modulation for wires
 - Signal is sent directly on a wire
- These signals do not propagate well as RF
 - Need to send at higher frequencies
- <u>Passband</u> modulation carries a signal by modulating a carrier

Passband Modulation

- Carrier is simply a signal oscillating at a desired frequency:
- We can modulate it by changing:
 - Amplitude, frequency, or phase

Passband Modulation (3)

Media

Types of Media

- <u>Media</u> propagate <u>signals</u> that carry <u>bits</u> of information
- We'll look at some common types:
 - Wires »
 - Fiber (fiber optic cables) »
 - Wireless »

Wires – Twisted Pair

- Very common; used in LANs and telephone lines
 - Twists reduce radiated signal

Wires – Coaxial Cable

• Also common. Better shielding for better performance

• Other kinds of wires too: e.g., electrical power (§2.2.4)

Fiber

- Long, thin, pure strands of glass
 - Enormous bandwidth (high speed) over long distances

• Two varieties: multi-mode (shorter links, cheaper) and single-mode (up to ~100 km)

Signals over Fiber

- Light propagates with very low loss in three very wide frequency bands
 - Use a carrier to send information

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u> at a receiver; need to coordinate use

Wireless Interference

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

ACTIVITY CODE

NON-SOVERNMENT EXCLUSIVE

In share is a graphic single-point in time peringsal of the Table of Programmy Advantations used by the Co and PTA, as such a down on company which of a spacetic, i.e. furthers and room diverges do to the TBAS of Company, effectively. The down interaction interaction in the control of the program of the tables.

CSE 461 University of Washington

Wireless

• Unlicensed (ISM) frequencies, e.g., WiFi, are widely used for computer networking

Signals bounce off objects and take multiple paths
Some frequencies attenuated at receiver, varies with location

MIMO (Multiple input and multiple output)

https://www.pcmag.com/encyclopedia/term/47052/mimo

Limits

Topic

- How rapidly can we send information over a link?
 - <u>Nyquist</u> limit (~1924)
 - <u>Shannon</u> capacity (1948)
- Practical systems are devised to approach these limits

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise (N)
 - B (in hertz) limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Nyquist Limit

• The maximum <u>symbol</u> rate is 2B

$$\underbrace{1010101010101010101}_{\text{}}$$

• Thus if there are V signal levels, ignoring noise, the maximum bit rate is:

$$R = 2B \log_2 V bits/sec$$

Shannon Capacity

- How many levels we can distinguish depends on S/N
 - Or SNR, the <u>Signal-to-Noise Ratio</u>
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:
 - $SNR_{dB} = 10log_{10}(S/N)$

Shannon Capacity

• Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

$$C = B \log_2(1 + S/N) bits/sec$$

Wired/Wireless Perspective

- Wires, and Fiber
 - Engineer link to have requisite SNR and B
 - \rightarrow Can fix data rate

Engineer SNR for data rate

- Wireless
 - Given B, but SNR varies greatly
 - \rightarrow Can't design for worst case, must adapt data rate

Adapt data rate to SNR