

(continued)

Topics

- 1. Framing
 - Delimiting start/end of frames
- 2. Error detection and correction
 - Handling errors
- 3. Retransmissions
 - Handling loss
- 4. Multiple Access
 - 802.11, classic Ethernet
- 5. Switching
 - Modern Ethernet

Reminder, Switch

Learning with Multiple Switches

Problem – Forwarding Loops

- May have a loop in the topology
 - Redundancy, in case of failures
 - Or a simple mistake
- Want LAN switches to "just work"
 - Plug-and-play, no changes to hosts
 - But loops cause a problem ...

Forwarding Loops

• Suppose the network is started and A sends to F. What happens?

Forwarding Loops (3)

- Suppose the network is started and A sends to F. What happens?
 - $A \rightarrow C \rightarrow B$, D-left, D-right
 - D-left \rightarrow C-right, E, F
 - D-right \rightarrow C-left, E, F
 - C-right \rightarrow D-left, A, B
 - C-left \rightarrow D-right, A, B
 - D-left \rightarrow ...
 - D-right \rightarrow ...
- Why not just remember what you've seen and throw away duplicates?

Spanning Tree Solution

- Switches collectively find a <u>spanning tree</u> for the topology
 - A subset of links that is a tree (no loops) and reaches all switches
 - They switches forward as normal on the spanning tree
 - Broadcasts will go up to the root of the tree and down all the branches

Spanning Tree

Spanning Tree Algorithm

- Rules of the distributed game:
 - All switches run the same algorithm
 - They start with no information
 - Operate in parallel and send messages
 - Always search for the best solution
- Ensures a highly robust solution
 - Any topology, with no configuration
 - Adapts to link/switch failures, ...

Radia Perlman (1952–)

- Key early work on routing protocols
 - Routing in the ARPANET
 - Spanning Tree for switches (next)
 - Link-state routing (later)
- Now focused on network security

Spanning Tree Algorithm (2)

- Overview:
 - 1. Elect a root node of the tree (switch with the lowest address)
 - 2. Grow tree as shortest distances from the root (using lowest address to break distance ties)
 - 3. Turn off ports for forwarding if they aren't on the spanning tree

Spanning Tree Algorithm

- Details:
 - Each switch initially believes it is the root of the tree
 - Each switch sends periodic updates to neighbors with:
 - Its address
 - address of who it believes is the root
 - its distance (in hops) to that root
 - Switches favors
 - Lower numbered switches as roots
 - Routers with shorter distances to root
 - Uses lowest address as a tie for distances

Spanning Tree Algorithm

Spanning Tree Example

- 1st round, sending:
 - A sends (A, A, 0) to say it is root
 - B, C, D, E, and F do likewise
- 1st round, receiving:
 - A still thinks is it (A, A, 0)
 - B still thinks (B, B, O)
 - C updates to (C, A, 1)
 - D updates to (D, C, 1)
 - E updates to (E, A, 1)
 - F updates to (F, B, 1)

Spanning Tree Example (2)

- 2nd round, sending
 - Nodes send their updated state
- 2nd round receiving:
 - A remains (A, A, 0)
 - B updates to (B, A, 2) via C
 - C remains (C, A, 1)
 - D updates to (D, A, 2) via C
 - E remains (E, A, 1)
 - F remains (F, B, 1)

Spanning Tree Example (3)

- 3rd round, sending
 - Nodes send their updated state
- 3rd round receiving:
 - A remains (A, A, 0)
 - B remains (B, A, 2) via C
 - C remains (C, A, 1)
 - D remains (D, A, 2) via C-left
 - E remains (E, A, 1)
 - F updates to (F, A, 3) via B

Spanning Tree Example (4)

- 4th round
 - Steady-state has been reached
 - Nodes turn off forwarding that is not on the spanning tree
- Algorithm continues to run
 - Adapts by timing out information
 - E.g., if A fails, other nodes forget it, and B will become the new root

Spanning Tree Example (5)

- Forwarding proceeds as usual on the ST
- Initially D sends to F:

• And F sends back to D:

Spanning Tree Example (6)

- Forwarding proceeds as usual on the ST
- Initially D sends to F:
 - D \rightarrow C-left
 - C \rightarrow A, B
 - $A \rightarrow E$
 - $B \rightarrow F$
- And F sends back to D:
 - $F \rightarrow B$
 - $B \rightarrow C$
 - $C \rightarrow D$

(hm, not such a great route)

