

(continued)

Topics

- 1. Framing
 - Delimiting start/end of frames
- 2. Error detection and correction
 - Handling errors
- 3. Retransmissions
 - Handling loss
- 4. Multiple Access
 - 802.11, classic Ethernet
- 5. Switching
 - Modern Ethernet

Retransmissions

Context on Reliability

• Where in the stack should we place reliability functions?

Application
Transport
Network
Link
Physical

Context on Reliability

• Everywhere? It is a key issue

• Different layers contribute differently

Recover actions (correctness) Mask errors (performance optimization)

ARQ (Automatic Repeat reQuest)

- ARQ often used when errors are common or must be corrected
 - E.g., WiFi, and TCP
- Rules at sender and receiver:
 - Receiver automatically acknowledges correct frames with an ACK
 - Sender automatically resends after a timeout, until an ACK is received

So What's Tricky About ARQ?

- Two non-trivial issues:
 - How long to set the timeout?
 - How to avoid accepting duplicate frames as new frames
- Want performance in the common case and correctness always

Timeouts

- Timeout should be:
 - Not too big (link goes idle)
 - Not too small (spurious resend)
- Fairly easy on a LAN
 - Clear worst case, little variation
- Fairly difficult over the Internet
 - Much variation, no obvious bound
 - We'll revisit this with TCP (later)

Detecting Duplicates

- Frames and ACKs must both carry UIDs for correctness
- Sequence numbers are a handy form of UID that also allow receiver to detect missing frames
 - Useful for sliding window
- Do we need sliding window on a LAN?

Link Layer Retransmission Summary

- Should retranmissions occur at link layer
 - Depends on expected error rate
 - Think of them as a performance optimization (relative to just leaving it to TCP) when they're implemented
- Because latencies are typically small(ish) and tightly bounded on a single link
 - Timeout estimation is simpler
 - Less motivation to use sliding window, rather than stop-and-wait

Multiple Access

Topic

- Multiplexing is the network word for the sharing of a resource
- Classic scenario is sharing a link among different users
 - Time Division Multiplexing (TDM)
 - Frequency Division Multiplexing (FDM)

Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule

Frequency Division Multiplexing (FDM)

• Put different users on different frequency bands

TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the time; in FDM, a user sends at a low rate all the time

TDM/FDM Usage

- Statically divide a resource
 - Suited for continuous traffic, fixed number of users
- Widely used in telecommunications
 - TV and radio stations (FDM)
 - GSM (2G cellular) allocates calls using TDM within FDM

Multiplexing Network Traffic

- Network traffic is <u>bursty</u>
 - ON/OFF sources
 - Load varies greatly over time

Multiplexing Network Traffic (2)

- Network traffic is <u>bursty</u>
 - Inefficient to always allocate user their ON needs with TDM/FDM

Multiplexing Network Traffic (3)

• <u>Multiple access</u> schemes multiplex users according to demands – for gains of statistical multiplexing

Random Access

- How do nodes share a single link? Who sends when, e.g., in WiFI?
 - Explore with a simple model

- Assume no-one is in charge
 - Distributed system

Random Access

- We will explore random <u>multiple access control</u> (MAC) protocols
 - This is the basis for <u>classic Ethernet</u>
 - Remember: data traffic is bursty

ALOHA Network

- Seminal computer network connecting the Hawaiian islands in the late 1960s
 - When should nodes send?
 - A new protocol was devised by Norm Abramson ...

ALOHA Protocol

- Simple idea:
 - Node just sends when it has traffic.
 - If there was a collision (no ACK received) then wait a random time and resend
- That's it!

ALOHA Protocol

 Some frames will be lost, but many may get through...

• Good idea?

ALOHA Protocol

- Simple, decentralized protocol that works well under low load!
- Not efficient under high load
 - Analysis shows at most 18% efficiency
 - Improvement: divide time into slots and efficiency goes up to 36%
- We'll look at other improvements

Classic Ethernet

- ALOHA inspired Bob Metcalfe to invent Ethernet for LANs in 1973
 - Nodes share 10 Mbps coaxial cable
 - Hugely popular in 1980s, 1990s

: © 2009 IEEE

CSMA (Carrier Sense Multiple Access)

- Improve ALOHA by listening for activity before we send (Doh!)
 - Can do easily with wires, not wireless
- So does this eliminate collisions?
 - Why or why not?

• Still possible to listen and hear nothing when another node is sending because of delay

CSMA/CD (with <u>Collision Detection</u>)

- Can reduce the cost of collisions by detecting them and aborting (Jam) the rest of the frame time
 - Again, we can do this with wires

CSMA/CD Complications

- Everyone who collides needs to know it happened
 - Time window in which a node may hear of a collision is 2D seconds

CSMA/CD Complications

- Impose a minimum frame length of 2D seconds
 - So node can't finish before collision
 - Ethernet minimum frame is 64 bytes

CSMA "Persistence"

• What should a node do if another node is sending?

• Idea: Wait until it is done, and send

CSMA "Persistence" (2)

- Problem is that multiple waiting nodes will queue up then collide
 - More load, more of a problem

CSMA "Persistence"

- Intuition for a better solution
 - If there are N queued senders, we want each to send next with probability 1/N

