
Link Layer
(continued)

Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 2

Using Error Codes

•Codeword consists of D data plus R check bits
(=systematic block code)

•Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 3

D R=fn(D)

Data bits Check bits

Using Error Codes

•Receiver:
• Receive D+R bits with unknown errors

• Recompute R check bits based on the D data bits; error if
R doesn’t match R’

CSE 461 University of Washington 4

D R’

Data bits Check bits

R=fn(D)
=?

Why Error Correction is Hard

• If we had reliable check bits we could use them to
narrow down the position of the error
• Then correction would be easy

•But error could be in the check bits as well as the
data bits!
• Data might even be correct

CSE 461 University of Washington 5

Intuition for Error Correcting Code

•Suppose we construct a code with a Hamming
distance of at least 3
• Need ≥3 bit errors to change one valid codeword into

another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct
them by mapping an error to the closest valid
codeword
• Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 6

Intuition

• Visualization of code:

CSE 461 University of Washington 7

A

B

Valid
codeword

Error
codeword

Intuition (3)

• Visualization of code:

CSE 461 University of Washington 8

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Hamming Code

•Gives a method for constructing a code with a
distance of 3
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting

with position 1

• Check bit in position p is parity of positions with a p term
in their values

•Plus an easy way to correct

CSE 461 University of Washington 9

Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 10

_ _ _ _ _ _ _
1 2 3 4 5 6 7

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 11

0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0

1 2 3 4 5 6 7

Hamming Code (4)

•To decode:
• Recompute check bits (with parity sum including the

check bit)

• Arrange as a binary number
• Value (syndrome) tells error position

• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington 12

Hamming Code (5)

•Example, continued

CSE 461 University of Washington 13

0 1 0 0 1 0 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (6)

•Example, continued

CSE 461 University of Washington 14

0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

Hamming Code (7)

•Example, continued

CSE 461 University of Washington 15

0 1 0 0 1 1 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (8)

•Example, continued

CSE 461 University of Washington 16

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

Other Error Correction Codes

•Codes used in practice are more involved than
Hamming

•Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile

• Decode using Viterbi algorithm (which can use bit
confidence values)

CSE 461 University of Washington 17

