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Where we are in the Course

•Moving on up to the Link Layer!
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Scope of the Link Layer
•Concerns how to transfer messages over one or 

more connected links
• Messages are frames, of limited size

• Builds on the physical layer
• How to transfer bits

Frame



In terms of layers …
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In terms of layers (2)
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Typical Implementation of Layers (2)
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Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet
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Framing
Delimiting start/end of frames



Topic

•The Physical layer gives us a stream of bits. How do 
we interpret it as a sequence of frames?
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…10110 …

Um?



Framing Methods

• We’ll look at:
• Byte count (motivation)

• Byte stuffing 

• Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11
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Byte Count

• First try:
• Let’s start each frame with a length field

• It’s simple, and hopefully good enough …
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Byte Count (2)

• How well do you think it works?
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Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame
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Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame

• Replace (“stuff”) the flag with an escape code
• Complication: have to escape the escape code too!
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Byte Stuffing

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC
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Byte Stuffing

• Now any unescaped FLAG is the start/end of a frame
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Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s

• On transmit, after five 1s in the data, insert a 0

• On receive, a 0 after five 1s is deleted 
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Bit Stuffing

• Example:
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Transmitted bits
with stuffing

Data bits



Bit Stuffing

• So how does it compare with byte stuffing?
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Link Example: PPP over SONET

• PPP is Point-to-Point Protocol

• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links
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Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an 
IP packet over the link
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Protocol stacks
PPP frames may be split over 

SONET payloads



Link Example: PPP over SONET (3)

• Framing uses byte stuffing 

• FLAG is 0x7E and ESC is 0x7D
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Link Example: PPP over SONET (4)

• Byte stuffing method:
• To stuff (unstuff) a byte

• add (remove) ESC (0x7D)

• and XOR byte with 0x20

• Removes FLAG from the contents of the frame
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Error detection and correction
Handling errors



Topic

•Some bits will be received in error due to noise. 
What can we do?
• Detect errors with codes
• Correct errors with codes

•Reliability is a concern that cuts across the layers
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Problem – Noise may flip received bits 
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Approach – Add Redundancy 

•Error detection codes
• Add check bits to the message bits to let some errors be 

detected

•Error correction codes
• Add more check bits to allow correction of  some errors

•Key issue is now to structure the code to detect 
many errors with few check bits and modest 
computation
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• Ideas?



Motivating Example

•A simple code to handle errors:
• Send two copies! 
• Error if differ from each other.

•How good is this code?
• How many bit errors can it detect?

• What is the minimum number of bit errors that could cause it to 
make a mistake?

• How many bit errors can it correct?
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Motivating Example

•We want to handle more errors with less overhead
• Will look at better codes

• But, they can’t handle all errors
• And they focus on accidental errors (not an attacker - will 

look at secure hashes later)
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Using Error Codes

•Codeword consists of D data plus R check bits 
(=systematic block code)

•Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes

•Receiver:  
• Receive D+R bits with unknown errors

• Recompute R check bits based on the D data bits; error if 
R doesn’t match R’
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D R’

Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be 
correct; overhead is low
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Hamming Distance

•Distance is the number of bit flips needed to change 
D1 to D2

•Hamming distance of a coding is the minimum 
distance between any pair of valid  codewords
• How many bits  must be flipped to turn one legal codeword into another?
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Hamming Distance

•Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always 

be corrected 
• map to the closest valid codeword  (there can be only one)

CSE 461 University of Washington 35



Parity Bit  - Simple Error Detection 

•Take D data bits, add 1 check bit that is the sum of 
the D bits
• “Sum” is modulo 2 or XOR
• This is called even parity

•Overhead is one bit, not matter how big D is
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Parity Bit

•How well does parity work?
• What is the distance of the code?

• How many errors will it detect/correct?

•What happen if there are more errors?

CSE 461 University of Washington 37



Checksums

• Like parity, number of check bits is independent of 
the amount of data

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic (must 
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------

ddf2 

220d 
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Internet Checksum
0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf1 

ddf1 
+    2 
------

ddf3 

220c 

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum
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Internet Checksum
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------

ffff

0000 
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Internet Checksum
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------

ffff

0000 



Internet Checksum

•How well does the checksum work?
• What is the distance of the code?

• How many errors will it detect/correct?

•What about larger errors?
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Cyclic Redundancy Check (CRC)

•Even stronger protection
• Given n data bits, generate k check bits such that the n+k

bits are evenly divisible by a generator C 

•Example with numbers:
• n = 302, k = one digit, C = 3
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CRCs

• The catch:
• It’s based on mathematics of finite fields, in which bit strings represent 

polynomials

• e.g, 10011010 is x
7

+ x
4

+ x
3

+ x
1

• What this means:
• We work with binary values and operate using modulo 2 arithmetic

CSE 461 University of Washington 46



CRCs

• Send Procedure:

1. Extend the n data bits with k zeros

2. Divide by the generator value C

3. Keep remainder, ignore quotient

4. Adjust k check bits by remainder

• Receive Procedure:

1. Divide and check for zero remainder
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CRCs
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Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4 

1 0 0 1 1 1  1  0  1  0  1  1  1  1  1 



CRCs
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CRCs

• Protection depend on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
• HD=4, detects up to triple bit errors

• Also odd number of errors 

• And bursts of up to k bits in error

• Not vulnerable to systematic errors like checksums
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