
Link Layer

Where we are in the Course

•Moving on up to the Link Layer!

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application

CSE 461 University of Washington 3

Scope of the Link Layer
•Concerns how to transfer messages over one or

more connected links
• Messages are frames, of limited size

• Builds on the physical layer
• How to transfer bits

Frame

In terms of layers …

CSE 461 University of Washington 4

Actual data path

Virtual data path

Network

Link

Physical

In terms of layers (2)

CSE 461 University of Washington 5

Actual data path

Virtual data path

Network

Link

Physical

Typical Implementation of Layers (2)

CSE 461 University of Washington 6

Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 7

Framing
Delimiting start/end of frames

Topic

•The Physical layer gives us a stream of bits. How do
we interpret it as a sequence of frames?

CSE 461 University of Washington 9

…10110 …

Um?

Framing Methods

• We’ll look at:
• Byte count (motivation)

• Byte stuffing

• Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11

CSE 461 University of Washington 10

Byte Count

• First try:
• Let’s start each frame with a length field

• It’s simple, and hopefully good enough …

CSE 461 University of Washington 11

Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington 12

Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

CSE 461 University of Washington 13

Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame

• Replace (“stuff”) the flag with an escape code
• Complication: have to escape the escape code too!

CSE 461 University of Washington 14

Byte Stuffing

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC

CSE 461 University of Washington 15

Byte Stuffing

• Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington 16

Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s

• On transmit, after five 1s in the data, insert a 0

• On receive, a 0 after five 1s is deleted

CSE 461 University of Washington 17

Bit Stuffing

• Example:

CSE 461 University of Washington 18

Transmitted bits
with stuffing

Data bits

Bit Stuffing

• So how does it compare with byte stuffing?

CSE 461 University of Washington 19

Transmitted bits
with stuffing

Data bits

Link Example: PPP over SONET

• PPP is Point-to-Point Protocol

• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links

CSE 461 University of Washington 20

Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an
IP packet over the link

CSE 461 University of Washington 21

Protocol stacks
PPP frames may be split over

SONET payloads

Link Example: PPP over SONET (3)

• Framing uses byte stuffing

• FLAG is 0x7E and ESC is 0x7D

CSE 461 University of Washington 22

Link Example: PPP over SONET (4)

• Byte stuffing method:
• To stuff (unstuff) a byte

• add (remove) ESC (0x7D)

• and XOR byte with 0x20

• Removes FLAG from the contents of the frame

CSE 461 University of Washington 23

Error detection and correction
Handling errors

Topic

•Some bits will be received in error due to noise.
What can we do?
• Detect errors with codes
• Correct errors with codes

•Reliability is a concern that cuts across the layers

CSE 461 University of Washington 25

Problem – Noise may flip received bits

CSE 461 University of Washington 26

Signal
0 0 0 0

11 1

0

0 0 0 0

11 1

0

0 0 0 0

11 1

0

Slightly
Noisy

Very
noisy

Approach – Add Redundancy

•Error detection codes
• Add check bits to the message bits to let some errors be

detected

•Error correction codes
• Add more check bits to allow correction of some errors

•Key issue is now to structure the code to detect
many errors with few check bits and modest
computation

CSE 461 University of Washington 27

• Ideas?

Motivating Example

•A simple code to handle errors:
• Send two copies!
• Error if differ from each other.

•How good is this code?
• How many bit errors can it detect?

• What is the minimum number of bit errors that could cause it to
make a mistake?

• How many bit errors can it correct?

CSE 461 University of Washington 29

Motivating Example

•We want to handle more errors with less overhead
• Will look at better codes

• But, they can’t handle all errors
• And they focus on accidental errors (not an attacker - will

look at secure hashes later)

CSE 461 University of Washington 30

Using Error Codes

•Codeword consists of D data plus R check bits
(=systematic block code)

•Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 31

D R=fn(D)

Data bits Check bits

Using Error Codes

•Receiver:
• Receive D+R bits with unknown errors

• Recompute R check bits based on the D data bits; error if
R doesn’t match R’

CSE 461 University of Washington 32

D R’

Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be
correct; overhead is low

CSE 461 University of Washington 33

All codewords of
length D+R

Correct
codewords

Hamming Distance

•Distance is the number of bit flips needed to change
D1 to D2

•Hamming distance of a coding is the minimum
distance between any pair of valid codewords
• How many bits must be flipped to turn one legal codeword into another?

CSE 461 University of Washington 34

Hamming Distance

•Error detection:
• For a coding of distance d+1, up to d errors will always be

detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always

be corrected
• map to the closest valid codeword (there can be only one)

CSE 461 University of Washington 35

Parity Bit - Simple Error Detection

•Take D data bits, add 1 check bit that is the sum of
the D bits
• “Sum” is modulo 2 or XOR
• This is called even parity

•Overhead is one bit, not matter how big D is

CSE 461 University of Washington 36

Parity Bit

•How well does parity work?
• What is the distance of the code?

• How many errors will it detect/correct?

•What happen if there are more errors?

CSE 461 University of Washington 37

Checksums

• Like parity, number of check bits is independent of
the amount of data

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity

CSE 461 University of Washington 38

1500 bytes 16 bits

Internet Checksum

•Sum is defined in 1s complement arithmetic (must
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 39

CSE 461 University of Washington 40

Internet Checksum
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001
f204
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 41

Internet Checksum
0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

CSE 461 University of Washington 42

Internet Checksum
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

CSE 461 University of Washington 43

Internet Checksum
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

Internet Checksum

•How well does the checksum work?
• What is the distance of the code?

• How many errors will it detect/correct?

•What about larger errors?

CSE 461 University of Washington 44

Cyclic Redundancy Check (CRC)

•Even stronger protection
• Given n data bits, generate k check bits such that the n+k

bits are evenly divisible by a generator C

•Example with numbers:
• n = 302, k = one digit, C = 3

CSE 461 University of Washington 45

CRCs

• The catch:
• It’s based on mathematics of finite fields, in which bit strings represent

polynomials

• e.g, 10011010 is x
7

+ x
4

+ x
3

+ x
1

• What this means:
• We work with binary values and operate using modulo 2 arithmetic

CSE 461 University of Washington 46

CRCs

• Send Procedure:

1. Extend the n data bits with k zeros

2. Divide by the generator value C

3. Keep remainder, ignore quotient

4. Adjust k check bits by remainder

• Receive Procedure:

1. Divide and check for zero remainder

CSE 461 University of Washington 47

CRCs

CSE 461 University of Washington 48

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4

1 0 0 1 1 1 1 0 1 0 1 1 1 1 1

CRCs

CSE 461 University of Washington 49

CRCs

• Protection depend on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
• HD=4, detects up to triple bit errors

• Also odd number of errors

• And bursts of up to k bits in error

• Not vulnerable to systematic errors like checksums

CSE 461 University of Washington 50

