Network Layer (Routing)

Border Gateway Protocol

Structure of the Internet

- Networks (ISPs, CDNs, etc.) group with IP prefixes
- Networks are richly interconnected, often using IXPs

Internet-wide Routing Issues

- Two problems beyond routing within a network
- 1. Scaling to very large networks
 - Techniques of IP prefixes, hierarchy, prefix aggregation
- 2. Incorporating policy decisions

Effects of Independent Parties

- Each party selects routes to suit its own interests
 - e.g, shortest path in ISP
- What path will be chosen for A2 \rightarrow B1 and B1 \rightarrow A2?
 - What is the best path?

Effects of Independent Parties (2)

- Selected paths are longer than overall shortest path
 - And asymmetric too!
- This is a consequence of independent goals and decisions, not hierarchy

Routing Policies

- Capture the goals of different parties
 Could be anything
- Common policies we'll look at:
 - ISPs give TRANSIT service to customers
 - ISPs give PEER service to each other

Routing Policies – Transit

- One party (customer) gets TRANSIT service from another party (ISP)
 - ISP accepts traffic for customer from the rest of Internet
 - ISP sends traffic from customer to the rest of Internet
 - Customer pays ISP for the privilege

Routing Policies – Peer

- Both party (ISPs in example) get PEER service from each other
 - Each ISP accepts traffic from the other ISP only for their customers
 - ISPs do not carry traffic to the rest of the Internet for each other
 - ISPs don't pay each other

Routing with BGP (Border Gateway Protocol)

- iBGP is for internal routing
- eBGP is interdomain routing for the Internet
 - Path vector, a kind of distance vector

- Parties like ISPs are called AS (Autonomous Systems)
- AS's **MANUALLY** configure their internal BGP routes/advertisements
- External routes go through complicated filters for forwarding/filtering
- AS BGP routers communicate with each other to keep consistent routing rules

- Border routers of ASes announce BGP routes
- Route announcements have IP prefix, path vector, next hop
 - Path vector is list of ASes on the way to the prefix
 - List is to find loops
- Route announcements move in the opposite direction to traffic

Policy is implemented in two ways:

- 1. Border routers of ISP announce paths only to other parties who may use those paths
 - Filter out paths others can't use
- 2. Border routers of ISP select the best path of the ones they hear in any, non-shortest way

• TRANSIT: AS1 says [B, (AS1, AS3)], [C, (AS1, AS4)] to AS2

• CUSTOMER (other side of TRANSIT): AS2 says [A, (AS2)] to AS1

• PEER: AS2 says [A, (AS2)] to AS3, AS3 says [B, (AS3)] to AS2

• AS2 has two routes to B (AS1, AS3) and chooses AS3 (Free!)

BGP Thoughts

- Much more beyond basics to explore!
- Policy is a substantial factor
 - Can independent decisions be sensible overall?
- Other important factors:
 - Convergence effects
 - How well it scales
 - Integration with intradomain routing
 - And more ...