
Network Layer (Routing)

Topics

• Network service models
• Datagrams (packets), virtual circuits

• IP (Internet Protocol)
• Internetworking
• Forwarding (Longest Matching Prefix)
• Helpers: ARP and DHCP
• Fragmentation and MTU discovery
• Errors: ICMP (traceroute!)
• IPv6, scaling IP to the world
• NAT, and “middleboxs”

• Routing Algorithms

CSE 461 University of Washington 2

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Algorithm:

•Mark all nodes tentative, set distances from source to 0
(zero) for source, and ∞ (infinity) for all other nodes

•While tentative nodes remain:
• Extract N, a node not yet on the tree with lowest distance
• Add link to N to the shortest path tree
• Relax the distances of neighbors of N by lowering any better

distance estimates

CSE 461 University of Washington 4

Dijkstra’s Algorithm (2)

• Initialization

CSE 461 University of Washington 5

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0 ∞

∞ ∞

∞

∞

∞

We’ll compute
shortest paths

from A ∞

Dijkstra’s Algorithm (3)

• Relax around A

CSE 461 University of Washington 6

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0 ∞

∞ 10

4

∞

∞

∞

Dijkstra’s Algorithm (4)

• Relax around B

CSE 461 University of Washington 7

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0
∞

8

4

Distance fell!

6

7

7

∞

Dijkstra’s Algorithm (5)

• Relax around C

CSE 461 University of Washington 8

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

Distance fell
again!

6

7

7

8

9

Dijkstra’s Algorithm (6)

• Relax around G (say)

CSE 461 University of Washington 9

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

Didn’t fall …

6

7

7

8

9

Dijkstra’s Algorithm (7)

• Relax around F (say)

CSE 461 University of Washington 10

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

Relax has no effect

6

7

7

8

9

Dijkstra’s Algorithm (8)

• Relax around E

CSE 461 University of Washington 11

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (9)

• Relax around D

CSE 461 University of Washington 12

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (10)

• Finally, H … done

CSE 461 University of Washington 13

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

6

7

7

8

9

Dijkstra Comments

• Finds shortest paths in order of increasing distance
from source
• Leverages optimality property

•Runtime depends on cost of extracting min-cost node
• Superlinear in network size (grows fast)

•Gives complete source/sink tree
• More than needed for forwarding!
• But requires complete topology

CSE 461 University of Washington 14

Distance Vector Routing

Distance Vector Routing

• Simple, early routing approach
• Used in ARPANET, and RIP

•One of two main approaches to routing
• Distributed version of Bellman-Ford
• Works, but very slow convergence after some failures

• Link-state algorithms are now typically used in practice
• More involved, better behavior

CSE 461 University of Washington 16

Distance Vector Setting

Each node computes its forwarding table in a
distributed setting:

1. Nodes know only the cost to their neighbors; not topology

2. Nodes can talk only to their directly connected neighbors

3. All nodes run the same algorithm concurrently

4. Nodes and links may fail, messages may be lost

CSE 461 University of Washington 17

Distance Vector Algorithm

Each node maintains a vector of distances (and next
hops) to all destinations
1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to

other destinations

2. Periodically send vector to neighbors

3. Update vector for each destination by selecting the
shortest distance heard, after adding cost of neighbor link

4. Use the best neighbor for forwarding

CSE 461 University of Washington 18

Distance Vector (2)

•Consider from the point of view of node A
• Can talk only with nodes B and E

CSE 461 University of Washington 19

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

To Cost

A 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

Initial
vector

Distance Vector (3)

•First exchange with B, E; learn best 1-hop routes

20

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

A’s

Cost

A’s

Next

0 --

4 B

∞ --

∞ --

10 E

∞ --

∞ --

∞ --

To
B

says

E

says

A ∞ ∞

B 0 ∞

C ∞ ∞

D ∞ ∞

E ∞ 0

F ∞ ∞

G ∞ ∞

H ∞ ∞

B

+4

E

+10

∞ ∞

4 ∞

∞ ∞

∞ ∞

∞ 10

∞ ∞

∞ ∞

∞ ∞

Learned better route

Distance Vector (4)

•Second exchange; learn best 2-hop routes

CSE 461 University of Washington 21

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

A’s

Cost

A’s

Next

0 --

4 B

6 B

12 E

8 B

7 B

7 B

∞ --

To
B

says

E

says

A 4 10

B 0 4

C 2 1

D ∞ 2

E 4 0

F 3 2

G 3 ∞

H ∞ ∞

B

+4

E

+10

8 20

4 14

6 11

∞ 12

8 10

7 12

7 ∞

∞ ∞

Distance Vector (4)

•Third exchange; learn best 3-hop routes

CSE 461 University of Washington 22

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

A’s

Cost

A’s

Next

0 --

4 B

6 B

8 B

7 B

7 B

7 B

9 B

To
B

says

E

says

A 4 8

B 0 3

C 2 1

D 4 2

E 3 0

F 3 2

G 3 6

H 5 4

B

+4

E

+10

8 18

4 13

6 11

8 12

7 10

7 12

7 16

9 14

Distance Vector (5)

•Subsequent exchanges; converged

CSE 461 University of Washington 23

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

A’s

Cost

A’s

Next

0 --

4 B

6 B

8 B

8 B

7 B

7 B

9 B

To
B

says

E

says

A 4 7

B 0 3

C 2 1

D 4 2

E 3 0

F 3 2

G 3 6

H 5 4

B

+4

E

+10

8 17

4 13

6 11

8 12

7 10

7 12

7 16

9 14

Distance Vector Dynamics

•Adding routes:
• News travels one hop per exchange

•Removing routes:
• When a node fails, no more exchanges, other nodes forget

•But... partitions (unreachable nodes in divided
network) are a problem
• “Count to infinity” scenario

CSE 461 University of Washington 24

DV Dynamics

•Good news travels quickly, bad news slowly
(inferred)

CSE 461 University of Washington 25

“Count to infinity” scenario

Desired convergence

X

DV Dynamics

•Various heuristics to address
• e.g., “Split horizon, poison reverse” (Don’t send route back

to where you learned it from.)

•But none are very effective
• An alternative approach, link state, now favored in practice

• Except when very resource-limited

CSE 461 University of Washington 26

RIP (Routing Information Protocol)

•DV protocol with hop count as metric
• Infinity is 16 hops; limits network size

• Includes split horizon, poison reverse

•Routers send vectors every 30 seconds
• Runs on top of UDP

• Time-out in 180 secs to detect failures

•RIPv1 specified in RFC1058 (1988)

CSE 461 University of Washington 27

Flood Routing (Flooding)

Flooding

• Goal: reach every node

• Bonus: can do that without using routing tables

• Rule used at each node:
• Repeat an incoming message on to all other neighbors
• Node remembers the message so that it is flooded only once

• How do you “remember a message”?

• Efficiency: one node may receive multiple copies of message

• Reliability: one node may receive multiple copies of message

CSE 461 University of Washington 29

Flooding (2)

•Consider a flood from A; first reaches B via AB, E via
AE

CSE 461 University of Washington 30

A B

C

D

E

F

G

H

Flooding (3)

•Next B floods BC, BE, BF, BG, and E floods EB, EC, ED,
EF

CSE 461 University of Washington 31

A B

C

D

E

F

G

H

F gets 2 copies

E and B send to
each other

Flooding (4)

•C floods CD, CH; D floods DC; F floods FG; G floods
GF

32

A B

C

D

E

F

G

H

F gets another copy

Flooding (5)

•H has no-one to flood … and we’re done

CSE 461 University of Washington 33

A B

C

D

E

F

G

H

Each link carries the
message, and in at
least one direction

Flooding Details

•Remember message (to stop flood) using original
source and sequence number
• So next message (with higher sequence) will go through

• If you want to make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed

CSE 461 University of Washington 34

Link-State Routing

Link-State Routing

•One of two approaches to routing
• Trades more computation than distance vector for better

dynamics

•Widely used in practice
• Used in Internet/ARPANET from 1979

• Modern networks use OSPF and IS-IS

CSE 461 University of Washington 36

Link-State Setting

Nodes compute their forwarding table in the same
distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology

2. Nodes can talk only to their neighbors

3. All nodes run the same algorithm concurrently

4. Nodes/links may fail, messages may be lost

CSE 461 University of Washington 37

Link-State Algorithm

Proceeds in two phases:

1. Nodes flood cost to neighbors with link state
packets
• Each node learns full network topology

2. Each node computes its own forwarding table
• By running Dijkstra (or equivalent)

CSE 461 University of Washington 38

CSE 461 University of Washington 39

Phase 1: Topology Dissemination
•Each node floods link state packet

(LSP) that describes their portion of
the topology

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

Seq. #

A 10

B 4

C 1

D 2

F 2

Node E’s LSP
flooded to A, B,
C, D, and F

Phase 2: Route Computation

•Each node has full topology
• By combining all LSPs

•Each node simply runs Dijkstra
• Replicated computation, but finds required routes directly

• Compile forwarding table from sink/source tree
• That’s it folks!

CSE 461 University of Washington 40

Forwarding Table

CSE 461 University of Washington 41

To Next

A C

B C

C C

D D

E --

F F

G F

H C
A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

Source Tree for E (from Dijkstra) E’s Forwarding Table

Handling Changes

•On change, flood updated LSPs, re-compute routes
• E.g., nodes adjacent to failed link or node initiate

CSE 461 University of Washington 42

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

XXXX

Seq. #

A 4

C 2

E 4

F 3

G ∞

B’s LSP
Seq. #

B 3

E 2

G ∞

F’s LSP
Failure!

Handling Changes (2)

• Link failure
• Both nodes notice, send updated LSPs

• Link is removed from topology

•Node failure
• All neighbors notice a link has failed

• Failed node can’t update its own LSP
• But it is OK: all links to node removed

CSE 461 University of Washington 43

Handling Changes (3)

•Addition of a link or node
• Add LSP of new node to topology

• Old LSPs are updated with new link

•Additions are the easy case …

CSE 461 University of Washington 44

Link-State Complications

• Things that can go wrong:
• Seq. number reaches max, or is corrupted
• Node crashes and loses seq. number
• Network partitions then heals

• Strategy:
• Include age on LSPs and forget old information that is not

refreshed

•Much of the complexity is due to handling corner cases

CSE 461 University of Washington 45

DV/LS Comparison

CSE 461 University of Washington 46

Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute

IS-IS and OSPF Protocols

•Widely used in large enterprise and ISP networks
• IS-IS = Intermediate System to Intermediate System

• OSPF = Open Shortest Path First

• Link-state protocol with many added features
• E.g., “Areas” for scalability

CSE 461 University of Washington 47

Equal-Cost Multi-Path Routing

Multipath Routing

•Allow multiple routing paths from node to
destination be used at once
• Topology has them for redundancy
• Using them can improve performance

•Questions:
• How do we find multiple paths?
• How do we send traffic along them?

CSE 461 University of Washington 49

CSE 461 University of Washington 50

Equal-Cost Multipath Routes
•One form of multipath routing

• Extends shortest path model by
keeping set if there are ties

•Consider AE
• ABE = 4 + 4 = 8

• ABCE = 4 + 2 + 2 = 8

• ABCDE = 4 + 2 + 1 + 1 = 8
• Use them all!

A B

C

D

E

F

G

H

2

2

10

1

1

4

2
4

4

3

3

3

Source “Trees”

•With ECMP, source/sink “tree” is a directed acyclic
graph (DAG)
• Each node has set of next hops
• Still a compact representation

CSE 461 University of Washington 51

Tree DAG

CSE 461 University of Washington 52

Source “Trees”

•Find the source “tree” for E
• Procedure is Dijkstra, simply

remember set of next hops
• Compile forwarding table similarly,

may have set of next hops

•Straightforward to extend DV too
• Just remember set of neighbors

A B

C

D

E

F

G

H

2

2

10

1

1

4

2
4

4

3

3

3

Source “Trees” (3)

CSE 461 University of Washington 53

Source Tree for E E’s Forwarding Table

A B

C

D

E

F

G

H

2

2

10

1

1

4

2
4

4

3

3

3

Node Next hops

A B, C, D

B B, C, D

C C, D

D D

E --

F F

G F

H C, D

New for
ECMP

Forwarding with ECMP

•Could randomly pick a next hop for each packet
based on destination
• Balances load, but adds jitter

• Instead, try to send packets from a given
source/destination pair on the same path
• Source/destination pair is called a flow

• Map flow identifier to single next hop
• No jitter within flow, but less balanced

CSE 461 University of Washington 54

Forwarding with ECMP

CSE 461 University of Washington 55

A B

C

D

E

F

G

H

2

2

10

1

1

4

2
4

4

3

3

3

Multipath routes from F/E to C/H E’s Forwarding Choices

Flow
Possible

next hops

Example

choice

F  H C, D D

F  C C, D D

E  H C, D C

E  C C, D C

Use both paths to get
to one destination

