Network Layer (Routing)

Topics

- Network service models
- Datagrams (packets), virtual circuits
- IP (Internet Protocol)
- Internetworking
- Forwarding (Longest Matching Prefix)
- Helpers: ARP and DHCP
- Fragmentation and MTU discovery
- Errors: ICMP (traceroute!)
- IPv6, scaling IP to the world
- NAT, and "middleboxs"
- Routing Algorithms

Dijkstra's Algorithm

Dijkstra's Algorithm

Algorithm:

- Mark all nodes tentative, set distances from source to 0 (zero) for source, and ∞ (infinity) for all other nodes
- While tentative nodes remain:
- Extract N, a node not yet on the tree with lowest distance
- Add link to N to the shortest path tree
- Relax the distances of neighbors of N by lowering any better distance estimates

Dijkstra's Algorithm (2)

- Initialization

We'll compute shortest paths
from A

Dijkstra's Algorithm (3)

- Relax around A

Dijkstra's Algorithm (4)

- Relax around B

Dijkstra's Algorithm (5)

- Relax around C

Dijkstra's Algorithm (6)

Dijkstra's Algorithm (7)

- Relax around F (say) Relax has no effect

Dijkstra's Algorithm (8)

- Relax around E

Dijkstra's Algorithm (9)

- Relax around D

Dijkstra's Algorithm (10)

- Finally, H ... done

Dijkstra Comments

- Finds shortest paths in order of increasing distance from source
- Leverages optimality property
- Runtime depends on cost of extracting min-cost node
- Superlinear in network size (grows fast)
- Gives complete source/sink tree
- More than needed for forwarding!
- But requires complete topology

Distance Vector Routing

Distance Vector Routing

- Simple, early routing approach
- Used in ARPANET, and RIP
- One of two main approaches to routing
- Distributed version of Bellman-Ford
- Works, but very slow convergence after some failures
- Link-state algorithms are now typically used in practice
- More involved, better behavior

Distance Vector Setting

Each node computes its forwarding table in a distributed setting:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their directly connected neighbors
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost

Distance Vector Algorithm

Each node maintains a vector of distances (and next hops) to all destinations

1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the shortest distance heard, after adding cost of neighbor link
4. Use the best neighbor for forwarding

Distance Vector (2)

- Consider from the point of view of node A
- Can talk only with nodes B and E

Initial vector

To	Cost
A	0
B	∞
C	∞
D	∞
E	∞
F	∞
G	∞
H	∞

Distance Vector (3)

- First exchange with B, E; learn best 1-hop routes

Learned better route

Distance Vector (4)

- Second exchange; learn best 2-hop routes

To	$\begin{gathered} B \\ \text { says } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { says } \end{gathered}$	$\begin{gathered} B \\ +4 \end{gathered}$	$\begin{gathered} E \\ +10 \end{gathered}$		A's Cost	A's Next
A	4	10	8	20		0	--
B	0	4	4	14		4	B
C	2	1	6	11		6	B
D	∞	2	∞	12		12	E
E	4	0	8	10		8	B
F	3	2	7	12		7	B
G	3	∞	7	∞		7	B
H	∞	∞	∞	∞		∞	--

Distance Vector (4)

- Third exchange; learn best 3-hop routes F_{F}

To	$\begin{gathered} B \\ \text { savs } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { says } \end{gathered}$	\rightarrow	$\begin{array}{r} B \\ +4 \end{array}$	$\begin{gathered} \mathrm{E} \\ +10 \end{gathered}$	\rightarrow	A's Cost	A's Next
A	4	8		8	18		0	--
B	0	3		4	13		4	B
C	2	1		6	11		6	B
D	4	2		8	12		8	B
E	3	0		7	10		7	B
F	3	2		7	12		7	B
G	3	6		7	16		7	B
H	5	4		9	14		9	B

Distance Vector (5)

- Subsequent exchanges; converged

To	B says	E says			
A	4	7			
B	0	3			
C	2	1			
D	4	2			
E	3	0			
F	3	2			
G	3	6			
H	5	4	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	17				
4	13				
6	11				
8	12				
7	10				
7	12				
7	16				
9	14	\quad	A's Cost	Next Next	
:---:	:---:				
0	--				
4	B				
6	B				
8	B				
8	B				
7	B				
7	B				
9	B				

Distance Vector Dynamics

- Adding routes:
- News travels one hop per exchange
- Removing routes:
- When a node fails, no more exchanges, other nodes forget
- But... partitions (unreachable nodes in divided network) are a problem
- "Count to infinity" scenario

DV Dynamics

- Good news travels quickly, bad news slowly

Desired convergence

"Count to infinity" scenario

DV Dynamics

- Various heuristics to address
- e.g., "Split horizon, poison reverse" (Don’t send route back to where you learned it from.)
- But none are very effective
- An alternative approach, link state, now favored in practice
- Except when very resource-limited

RIP (Routing Information Protocol)

- DV protocol with hop count as metric
- Infinity is 16 hops; limits network size
- Includes split horizon, poison reverse
- Routers send vectors every 30 seconds
- Runs on top of UDP
- Time-out in 180 secs to detect failures
- RIPv1 specified in RFC1058 (1988)

Flood Routing (Flooding)

Flooding

- Goal: reach every node
- Bonus: can do that without using routing tables
- Rule used at each node:
- Repeat an incoming message on to all other neighbors
- Node remembers the message so that it is flooded only once
- How do you "remember a message"?
- Efficiency: one node may receive multiple copies of message
- Reliability: one node may receive multiple copies of message

Flooding (2)

- Consider a flood from A; first reaches B via $A B, E$ via AE

Flooding (3)

- Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, EF F gets 2 copies

Flooding (4)

- C floods CD, CH; D floods DC; F floods FG; G floods GF
F gets another copy

Flooding (5)

- H has no-one to flood ... and we're done

Flooding Details

- Remember message (to stop flood) using original source and sequence number
- So next message (with higher sequence) will go through
- If you want to make flooding reliable, use ARQ
- So receiver acknowledges, and sender resends if needed

Link-State Routing

Link-State Routing

- One of two approaches to routing
- Trades more computation than distance vector for better dynamics
-Widely used in practice
- Used in Internet/ARPANET from 1979
- Modern networks use OSPF and IS-IS

Link-State Setting

Nodes compute their forwarding table in the same distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors
3. All nodes run the same algorithm concurrently
4. Nodes/links may fail, messages may be lost

Link-State Algorithm

Proceeds in two phases:

1. Nodes flood cost to neighbors with link state packets

- Each node learns full network topology

2. Each node computes its own forwarding table

- By running Dijkstra (or equivalent)

Phase 1: Topology Dissemination

- Each node floods link state packet (LSP) that describes their portion of the topology

Node E's LSP flooded to A, B, C, D, and F

Seq. \#	
A	10
B	4
C	1
D	2
F	2

Phase 2: Route Computation

- Each node has full topology
- By combining all LSPs
- Each node simply runs Dijkstra
- Replicated computation, but finds required routes directly
- Compile forwarding table from sink/source tree
- That's it folks!

Forwarding Table

Source Tree for E (from Dijkstra)

E's Forwarding Table

To	Next
A	C
B	C
C	C
D	D
E	--
F	F
G	F
H	C

Handling Changes

- On change, flood updated LSPs, re-compute routes
- E.g., nodes adjacent to failed link or node initiate

B's LSP	F's LSP	
Seq. \# A 4 C 2 E 4 F 3 G $\infty$$\quad$Seq. \# E 3 G 2		

Handling Changes (2)

- Link failure
- Both nodes notice, send updated LSPs
- Link is removed from topology
- Node failure
- All neighbors notice a link has failed
- Failed node can't update its own LSP
- But it is OK: all links to node removed

Handling Changes (3)

- Addition of a link or node
- Add LSP of new node to topology
- Old LSPs are updated with new link
- Additions are the easy case ...

Link-State Complications

- Things that can go wrong:
- Seq. number reaches max, or is corrupted
- Node crashes and loses seq. number
- Network partitions then heals
- Strategy:
- Include age on LSPs and forget old information that is not refreshed
- Much of the complexity is due to handling corner cases

DV/LS Comparison

Goal	Distance Vector	Link-State
Correctness	Distributed Bellman-Ford	Replicated Dijkstra
Efficient paths	Approx. with shortest paths	Approx. with shortest paths
Fair paths	Approx. with shortest paths	Approx. with shortest paths
Fast convergence	Slow - many exchanges	Fast - flood and compute
Scalability	Excellent - storage/compute	Moderate - storage/compute

IS-IS and OSPF Protocols

- Widely used in large enterprise and ISP networks
- IS-IS = Intermediate System to Intermediate System
- OSPF = Open Shortest Path First
- Link-state protocol with many added features
- E.g., "Areas" for scalability

Equal-Cost Multi-Path Routing

Multipath Routing

- Allow multiple routing paths from node to destination be used at once
- Topology has them for redundancy
- Using them can improve performance
- Questions:
- How do we find multiple paths?
- How do we send traffic along them?

Equal-Cost Multipath Routes

- One form of multipath routing
- Extends shortest path model by keeping set if there are ties
- Consider $\mathrm{A} \rightarrow \mathrm{E}$
- $\mathrm{ABE}=4+4=8$
- $\mathrm{ABCE}=4+2+2=8$
- $\mathrm{ABCDE}=4+2+1+1=8$
- Use them all!

Source "Trees"

- With ECMP, source/sink "tree" is a directed acyclic graph (DAG)
- Each node has set of next hops
- Still a compact representation

Source "Trees"

- Find the source "tree" for E
- Procedure is Dijkstra, simply remember set of next hops
- Compile forwarding table similarly, may have set of next hops
- Straightforward to extend DV too
- Just remember set of neighbors

Source "Trees" (3)

E's Forwarding Table

\longrightarrow| Node | Next hops |
| :---: | :---: |
| A | $\mathrm{B}, \mathrm{C}, \mathrm{D}$ |
| B | $\mathrm{B}, \mathrm{C}, \mathrm{D}$ |
| C | C, D |
| D | D |
| E | -- |
| F | F |
| G | F |
| H | C, D |

Forwarding with ECMP

- Could randomly pick a next hop for each packet based on destination
- Balances load, but adds jitter
- Instead, try to send packets from a given source/destination pair on the same path
- Source/destination pair is called a flow
- Map flow identifier to single next hop
- No jitter within flow, but less balanced

Forwarding with ECMP

Multipath routes from F/E to C/H

E's Forwarding Choices

Flow	Possible next hops	Example choice
$\mathrm{F} \rightarrow \mathrm{H}$	C, D	D
$\mathrm{F} \rightarrow \mathrm{C}$	C, D	D
$\mathrm{E} \rightarrow \mathrm{H}$	C, D	C
$\mathrm{E} \rightarrow \mathrm{C}$	C, D	C

Use both paths to get to one destination

