
Network Layer (Routing)



Topics

• Network service models
• Datagrams (packets), virtual circuits

• IP (Internet Protocol)
• Internetworking
• Forwarding (Longest Matching Prefix)
• Helpers: ARP and DHCP
• Fragmentation and MTU discovery
• Errors: ICMP (traceroute!)
• IPv6, scaling IP to the world
• NAT, and “middleboxs”

• Routing Algorithms
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Dijkstra’s Algorithm



Dijkstra’s Algorithm

Algorithm:

•Mark all nodes tentative, set distances from source to 0 
(zero) for source, and ∞ (infinity) for all other nodes

•While tentative nodes remain:
• Extract N, a node not yet on the tree with lowest distance
• Add link to N to the shortest path tree
• Relax the distances of neighbors of N by lowering any better 

distance estimates
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Dijkstra’s Algorithm (2)

• Initialization
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Dijkstra’s Algorithm (3)

• Relax around A
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Dijkstra’s Algorithm (4)

• Relax around B
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Dijkstra’s Algorithm (5)

• Relax around C
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Dijkstra’s Algorithm (6)

• Relax around G (say)
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Dijkstra’s Algorithm (7)

• Relax around F (say)
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Dijkstra’s Algorithm (8)

• Relax around E

CSE 461 University of Washington 11

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

0

7

4

6

7

7

8

9



Dijkstra’s Algorithm (9)

• Relax around D
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Dijkstra’s Algorithm (10)

• Finally, H … done
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Dijkstra Comments

• Finds shortest paths in order of increasing distance 
from source
• Leverages optimality property

•Runtime depends on cost of extracting min-cost node
• Superlinear in network size (grows fast)

•Gives complete source/sink tree
• More than needed for forwarding!
• But requires complete topology 
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Distance Vector Routing



Distance Vector Routing

• Simple, early routing approach
• Used in ARPANET, and RIP

•One of two main approaches to routing
• Distributed version of Bellman-Ford
• Works, but very slow convergence after some failures

• Link-state algorithms are now typically used in practice
• More involved, better behavior
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Distance Vector Setting

Each node computes its forwarding table in a 
distributed setting:

1. Nodes know only the cost to their neighbors; not topology

2. Nodes can talk only to their directly connected neighbors

3. All nodes run the same algorithm concurrently

4. Nodes and links may fail, messages may be lost
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Distance Vector Algorithm

Each node maintains a vector of distances  (and next 
hops) to all destinations
1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to 

other destinations

2. Periodically send vector to neighbors

3. Update vector for each destination by selecting the 
shortest distance heard, after adding cost of neighbor link

4. Use the best neighbor for forwarding
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Distance Vector (2)

•Consider from the point of view of node A
• Can talk only with nodes B and E

CSE 461 University of Washington 19

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3

To Cost

A 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

Initial
vector



Distance Vector (3)

•First exchange with B, E; learn best 1-hop routes
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Distance Vector (4)

•Second exchange; learn best 2-hop routes
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Distance Vector (4)

•Third exchange; learn best 3-hop routes
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Distance Vector (5)

•Subsequent exchanges; converged
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Distance Vector Dynamics

•Adding routes:
• News travels one hop per exchange

•Removing routes:
• When a node fails, no more exchanges, other nodes forget

•But... partitions (unreachable nodes in divided 
network) are a problem
• “Count to infinity” scenario
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DV Dynamics

•Good news travels quickly, bad news slowly 
(inferred)
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DV Dynamics

•Various heuristics to address
• e.g., “Split horizon, poison reverse” (Don’t send route back 

to where you learned it from.)

•But none are very effective
• An alternative approach, link state, now favored in practice

• Except when very resource-limited
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RIP (Routing Information Protocol)

•DV protocol with hop count as metric
• Infinity is 16 hops; limits network size

• Includes split horizon, poison reverse

•Routers send vectors every 30 seconds
• Runs on top of UDP

• Time-out in 180 secs to detect failures

•RIPv1 specified in RFC1058 (1988)
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Flood Routing (Flooding)



Flooding

• Goal: reach every node

• Bonus: can do that without using routing tables

• Rule used at each node:
• Repeat an incoming message on to all other neighbors
• Node remembers the message so that it is flooded only once

• How do you “remember a message”?

• Efficiency: one node may receive multiple copies of message

• Reliability: one node may receive multiple copies of message

CSE 461 University of Washington 29



Flooding (2)

•Consider a flood from A; first reaches B via AB, E via 
AE
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Flooding (3)

•Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, 
EF
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Flooding (4)

•C floods CD, CH; D floods DC; F floods FG; G floods 
GF
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Flooding (5)

•H has no-one to flood … and we’re done
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Flooding Details

•Remember message (to stop flood) using original 
source and sequence number
• So next message (with higher sequence) will go through

• If you want to make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed
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Link-State Routing



Link-State Routing

•One of two approaches to routing
• Trades more computation than distance vector for better 

dynamics 

•Widely used in practice
• Used in Internet/ARPANET from 1979

• Modern networks use OSPF and IS-IS
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Link-State Setting

Nodes compute their forwarding table in the same 
distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology

2. Nodes can talk only to their neighbors

3. All nodes run the same algorithm concurrently

4. Nodes/links may fail, messages may be lost
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Link-State Algorithm

Proceeds in two phases:

1. Nodes flood cost to neighbors with link state 
packets
• Each node learns full network topology

2. Each node computes its own forwarding table
• By running Dijkstra (or equivalent)
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Phase 1: Topology Dissemination
•Each node floods link state packet 

(LSP) that describes their portion  of 
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Phase 2: Route Computation

•Each node has full topology
• By combining all LSPs

•Each node simply runs Dijkstra
• Replicated computation, but finds required routes directly

• Compile forwarding table from sink/source tree
• That’s it folks!
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Forwarding Table
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Handling Changes

•On change, flood updated LSPs, re-compute routes
• E.g., nodes adjacent to failed link or node initiate
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Handling Changes (2)

• Link failure
• Both nodes notice, send updated LSPs

• Link is removed from topology

•Node failure
• All neighbors notice a link has failed

• Failed node can’t update its own LSP
• But it is OK: all links to node removed
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Handling Changes (3)

•Addition of a link or node
• Add LSP of new node to topology

• Old LSPs are updated with new link

•Additions are the easy case …
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Link-State Complications

• Things that can go wrong:
• Seq. number reaches max, or is corrupted
• Node crashes and loses seq. number
• Network partitions then heals

• Strategy:
• Include age on LSPs and forget old information that is not 

refreshed

•Much of the complexity is due to handling corner cases
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DV/LS Comparison
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Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute



IS-IS and OSPF Protocols

•Widely used in large enterprise and ISP networks
• IS-IS = Intermediate System to Intermediate System

• OSPF = Open Shortest Path First

• Link-state protocol with many added features
• E.g., “Areas” for scalability
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Equal-Cost Multi-Path Routing 



Multipath Routing

•Allow multiple routing paths from node to 
destination be used at once
• Topology has them for redundancy
• Using them can improve performance

•Questions:
• How do we find multiple paths?
• How do we send traffic along them?
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Equal-Cost Multipath Routes
•One form of multipath routing

• Extends shortest path model by      
keeping set if there are ties

•Consider AE
• ABE = 4 + 4 = 8

• ABCE = 4 + 2 + 2 = 8

• ABCDE = 4 + 2 + 1 + 1 = 8
• Use them all!
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Source “Trees”

•With ECMP, source/sink “tree” is a directed acyclic 
graph (DAG)
• Each node has set of next hops
• Still a compact representation
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Source “Trees”

•Find the source “tree” for E
• Procedure is Dijkstra, simply 

remember set of next hops
• Compile forwarding table similarly, 

may have set of next hops

•Straightforward to extend DV too
• Just remember set of neighbors
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Source “Trees” (3)

CSE 461 University of Washington 53

Source Tree for E E’s Forwarding Table

A B

C

D

E

F

G

H

2

2

10

1

1

4

2
4

4

3

3

3

Node Next hops

A B, C, D

B B, C, D

C C, D

D D

E --

F F

G F

H C, D

New for 
ECMP



Forwarding with ECMP

•Could randomly pick a next hop for each packet 
based on destination
• Balances load, but adds jitter

• Instead, try to send packets from a given 
source/destination pair on the same path
• Source/destination pair is called a flow

• Map flow identifier to single next hop
• No jitter within flow, but less balanced
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Forwarding with ECMP
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