Network Layer

Topics

- Network service models
 - Datagrams (packets), virtual circuits
- IP (Internet Protocol)
 - Internetworking
 - Forwarding (Longest Matching Prefix)
 - Helpers: ARP and DHCP
 - Fragmentation and MTU discovery
 - Errors: ICMP (traceroute!)
 - IPv6, scaling IP to the world
 - NAT, and "middleboxs"
- Routing Algorithms

Dynamic Host Configuration Protocol (DHCP)

Bootstrapping

• Problem:

- A node wakes up for the first time ...
- What is its IP address? What's the IP address of its router?
- At least Ethernet address is on NIC

Bootstrapping

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
- 2. DHCP: Automatically configure addresses
 - Shifts burden from users to IT folk

DHCP

- DHCP (Dynamic Host Configuration Protocol), from 1993, widely used
- It leases IP address to nodes
- Provides other parameters too
 - Network prefix
 - Address of local router
 - DNS server, time server, etc.

DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

DHCP
UDP
IP
Ethernet

DHCP Addressing

- Bootstrap issue:
 - How does node send a message to DHCP server before it is configured?
- Answer:
 - Node sends <u>broadcast</u> messages that delivered to all nodes on the network
 - Broadcast address is all 1s
 - IP (32 bit): 255.255.255.255
 - Ethernet/MAC (48 bit): ff:ff:ff:ff:ff

DHCP Messages

DHCP Messages

DHCP Messages

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK
- Protocol also supports replicated servers for reliability

Address Resolution Protocol (ARP)

Sending an IP Packet

• Problem:

- A node needs Link layer addresses to send a frame over the local link
- How does it get the destination link address from a destination IP address?

ARP (Address Resolution Protocol)

 Node uses to map a local IP address to its Link layer addresses

ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target IP to identify itself
 - Uses broadcast to reach all nodes

ARP

Ethernet

ARP Messages

ARP Messages (2)

ARP Table

```
# arp -an | grep 10
? (10.241.1.114) at 00:25:90:3e:dc:fc [ether] on vlan241
? (10.252.1.8) at 00:c0:b7:76:ac:19 [ether] on vlan244
? (10.252.1.9) at 00:c0:b7:76:ae:56 [ether] on vlan244
? (10.241.1.111) at 00:30:48:f2:23:fd [ether] on vlan241
? (10.252.1.6) at 00:c0:b7:74:fb:9a [ether] on vlan244
? (10.241.1.121) at 00:25:90:2c:d4:f7 [ether] on vlan241
[\ldots]
```

Discovery Protocols

- Help nodes find each other
 - There are more of them!
 - E.g., DLNA, Bonjour
- Often involve broadcast
 - Since nodes aren't introduced
 - Very handy glue

Fragmentation

Fragmentation

- Problem: How do we connect networks with different maximum packet sizes?
 - Need to split up packets, or discover the largest size to use

Packet Size Problem

- Different networks have different max packet sizes
 - Or MTU (Maximum Transmission Unit)
 - E.g., Ethernet 1.5K, WiFi 2.3K
- Prefer large packets for efficiency
 - But what size is too large?
 - Difficult as node doesn't know complete network path

Packet Size Solutions

- Fragmentation (now)
 - Split up large packets in if they are too big to send
 - Classic method, dated
- MTU Discovery (next)
 - Find the largest packet that fits on the network path
 - IP uses today instead of fragmentation

- Routers fragment packets too large to forward
- Receiving host reassembles to reduce load on routers

IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

IPv4 Fragmentation Procedure

- Routers split a packet that is too large:
 - Typically break into large pieces
 - Copy IP header to pieces
 - Adjust length on pieces
 - Set offset to indicate position
 - Set MF (More Fragments) on all pieces except last
 - Recomputes checksum
- Receiving hosts reassembles the pieces:
 - Identification field links pieces together, MF tells receiver when complete

Before MTU = 2300 ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

(Ignore length of headers)

After MTU = 1500 ID =
Data Len =
Offset =
MF =

ID = Data Len = Offset = MF =

Before MTU = 2300 ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

After MTU = 1500

- It works!
 - Allows repeated fragmentation
- But fragmentation is undesirable
 - More work for routers, hosts
 - Tends to magnify loss rate
 - Security vulnerabilities too

- Discover the MTU that will fit
 - So we can avoid fragmentation
 - The method in use today
- Host tests path with large packet
 - Routers provide feedback if too large; they tell host what size would have fit

- Process may seem involved
 - But usually quick to find right size
 - MTUs smaller on edges of network
- Path MTU depends on the path and can change
 - Search is ongoing
- Implemented with ICMP (next)
 - Set DF (Don't Fragment) bit in IP header to get feedback

Internet Control Message Protocol (ICMP)

Topic

- Problem: What happens when something goes wrong during forwarding?
 - Need to be able to find the problem

Internet Control Message Protocol

- ICMP is a companion protocol to IP
 - They are implemented together
 - Sits on top of IP (IP Protocol=1)
- Provides error report and testing
 - Error is at router while forwarding
 - Also testing that hosts can use

ICMP Errors

- When router encounters an error while forwarding:
 - It sends an ICMP error report back to the IP source
 - It discards the problematic packet; host needs to rectify

ICMP Message Format

- Each ICMP message has a Type, Code, and Checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

Portion of offending packet, starting with its IP header

Example ICMP Messages

Name	Type / Code	Usage
Dest. Unreachable (Net or Host)	3 / 0 or 1	Lack of connectivity
Dest. Unreachable (Fragment)	3 / 4	Path MTU Discovery
Time Exceeded (Transit)	11 / 0	Traceroute
Echo Request or Reply	8 or 0 / 0	Ping

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply

Traceroute

- IP header contains TTL (Time to live) field
 - Decremented every router hop, with ICMP error at zero
 - Protects against forwarding loops

Version	IHL	Differentiated Services	Total length		
Identification		D M F F	Fragment offset		
Time to live		Protocol	Header checksum		
Source address					
Destination address					
Options (0 or more words)					

Traceroute (2)

- Traceroute repurposes TTL and ICMP functionality
 - Sends probe packets increasing TTL starting from 1
 - ICMP errors identify routers on the path

