
Congestion Collapse



Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the ARPANET grew
• Links stayed busy but transfer rates fell by orders of 

magnitude! 
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Congestion Collapse (2)

• Queues became full, retransmissions clogged the network, 
and goodput fell
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Van Jacobson (1950—) 

•Widely credited with saving the 
Internet from congestion collapse 
in the late 80s
• Introduced congestion control 

principles
• Practical solutions (TCP Tahoe/Reno) 

•Much other pioneering work:
• Tools like traceroute, tcpdump, 

pathchar
• IP header compression, multicast tools
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TCP Tahoe/Reno

•TCP extensions we will study:
• ACK clocking

• Adaptive timeout (mean and variance)
• Slow-start

• Fast Retransmission
• Fast Recovery
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TCP Timeline
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1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse 
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)



TCP Timeline
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201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, ‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, ’06)

. . .

BackgroundRouter support

Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)



ACK Clocking



Sliding Window ACK Clock

•Each in-order ACK advances the sliding window and 
lets a new segment enter the network
• ACKs “clock” data segments
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Benefit of ACK Clocking

•Consider what happens when sender injects a burst 
of segments into the network
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Benefit of ACK Clocking

•Segments are buffered and spread out on slow link
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Benefit of ACK Clocking

• Segments maintain the spread up to the 
destination
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Benefit of ACK Clocking

•ACKs repeat the spread back to the sender
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Slow link

Acks maintain spread



Benefit of ACK Clocking

•Sender clocks new segments with the spread
• Now sending at the bottleneck link capacity without 

queuing!
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Benefit of ACK Clocking

•Helps run with low levels of loss and delay!

•The network smooths out the burst of data segments

•ACK clock transfers this smooth timing back to sender
• “just happens”

•Subsequent data segments are not sent in bursts so do 
not queue up in the network
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TCP Uses ACK Clocking

•TCP manages offered load using a sliding window 

•Sliding window controls how many segments are 
inside the network
• Called the congestion window, or cwnd
• (As always, rate is roughly cwnd/RTT)

•TCP sends only small bursts of segments to let the 
network keep the traffic smooth
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TCP Slow Start



Practical AIMD

•We want TCP to follow an AIMD control law for a 
good allocation

•Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

•Sender uses loss as network congestion signal

•Need TCP to work across a very large range of rates 
and RTTs
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TCP Startup Problem

•We want to quickly near the right rate, cwndIDEAL, but 
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the 

network (loss!) 
• Additive Increase with small bursts adapts cwnd gently to 

the network, but might take a long time to become 
efficient
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Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)

• Start slow, quickly reach large values
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Slow-Start Solution

• Start very conservatively and ramp up quickly
• Eventually packet loss will occur when the network is 

congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI
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Slow-Start Solution (3)

•Combined behavior, after first time
• Most time spend near right value
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Slow-Start (Doubling) Timeline
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Increment cwnd
by 1 packet for 
each ACK



Additive Increase Timeline
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TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK

• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout
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Timeout Misfortunes

•Why do a slow-start after timeout?
• Instead of MD cwnd (for AIMD)

•Timeouts are sufficiently long that the ACK clock will 
have run down
• Slow-start ramps up the ACK clock

•We need to detect loss before a timeout to get to 
full AIMD
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TCP Fast Recovery 



Practical AIMD

•We want TCP to follow an AIMD control law for a 
good allocation

•Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

•Sender uses slow-start to ramp up the ACK clock, 
followed by Additive Increase

•But after a timeout, sender slow-starts again with 
cwnd=1 (as it has no ACK clock)
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Inferring Loss from ACKs

•TCP uses a cumulative ACK
• Carries highest in-order seq. number

• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t 
arrived
• Tell us some new data did arrive, but it was not next 

segment

• Thus the next segment may be lost
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Fast Retransmit

•Treat three duplicate ACKs as a loss signal 
• Retransmit next expected segment

• Some repetition allows for reordering, but still detects loss 
quickly

CSE 461 University of Washington 30

Ack 1  2  3  4  5  5  5  5  5  5



Fast Retransmit
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Fast Retransmit 

• It can repair single segment loss quickly, typically 
before a timeout

•However, we have quiet time at the sender/receiver 
while waiting for the ACK to jump

•And we still need to MD cwnd …
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Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data 
has arrived
• Each new duplicate ACK means that some new segment 

has arrived
• It will be the segments after the loss

• Thus advancing the sliding window will not increase the 
number of segments in transit in the network
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Fast Recovery

•First fast retransmit, and MD cwnd

•Then pretend further duplicate ACKs are the 
expected ACKs
• Lets new segments be sent for ACKs 
• Reconcile views when the ACK jumps
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Fast Recovery
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Fast Recovery

•With fast retransmit, it repairs a single segment loss 
quickly and keeps the ACK clock running

•This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a 

smaller cwnd

•TCP Reno combines slow-start, fast retransmit and 
fast recovery
• Multiplicative Decrease is ½ 
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TCP Reno
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TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
• Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit 

without guesswork
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Network-Side 
Congestion Control



Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and 
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid 
congestion altogether!
• Reduces loss and delay

•But how can we do this?
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Random Early Detection (RED)

• When router’s buffer is filling, drop TCP packets at random
• TCP flow takes the dropped packet as a loss and slows down

• Note this scheme relies only on TCP characteristics
• Don’t have to modify headers or require that all routers support it

• Drop at random, depending on queue size
• If queue empty, accept packet always
• If queue full, always drop
• As queue approaches full, increase likelihood of packet drop

• Example: 1 queue slot left, 10 packets expected, 90% chance of drop

• When you pick a packet at random to drop, which flow is it most likely 
to belong to?



RED (Random Early Detection)

•Router detects the onset of congestion via its queue
• Prior to congestion, drop a packet to signal
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RED (Random Early Detection)

•Sender enters MD, slows packet flow
•We shed load, everyone is happy 
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ECN (Explicit Congestion Notification)

• Idea:  to send feedback to sender, RED drops a 
packet
• Why not deliver the packet, but “set a bit” in it indicating that the 

packet has encountered a congested router?

• The problems:
• What bit?
• The packet is headed to the receiver, but notification needs to go 

to the sender
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ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
• When congested, it marks affected packets (IP header)
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ECN

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion
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ECN

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion
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Marked ACK segment



ECN

•Advantages:
• Routers deliver clear signal to hosts

• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded
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