
Congestion Collapse

Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the ARPANET grew
• Links stayed busy but transfer rates fell by orders of

magnitude!

CSE 461 University of Washington 2

Congestion Collapse (2)

• Queues became full, retransmissions clogged the network,
and goodput fell

CSE 461 University of Washington 3

Congestion
collapse

Van Jacobson (1950—)

•Widely credited with saving the
Internet from congestion collapse
in the late 80s
• Introduced congestion control

principles
• Practical solutions (TCP Tahoe/Reno)

•Much other pioneering work:
• Tools like traceroute, tcpdump,

pathchar
• IP header compression, multicast tools

CSE 461 University of Washington 4

TCP Tahoe/Reno

•TCP extensions we will study:
• ACK clocking

• Adaptive timeout (mean and variance)
• Slow-start

• Fast Retransmission
• Fast Recovery

CSE 461 University of Washington 5

TCP Timeline

CSE 461 University of Washington 6

1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)

TCP Timeline

CSE 461 University of Washington 7

201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, ‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, ’06)

. . .

BackgroundRouter support

Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)

ACK Clocking

Sliding Window ACK Clock

•Each in-order ACK advances the sliding window and
lets a new segment enter the network
• ACKs “clock” data segments

CSE 461 University of Washington 9

Ack 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11 Data

Benefit of ACK Clocking

•Consider what happens when sender injects a burst
of segments into the network

CSE 461 University of Washington 10

Fast link Fast linkSlow (bottleneck) link

Queue

Benefit of ACK Clocking

•Segments are buffered and spread out on slow link

CSE 461 University of Washington 11

Fast link Fast linkSlow (bottleneck) link

Segments
“spread out”

Benefit of ACK Clocking

• Segments maintain the spread up to the
destination

CSE 461 University of Washington 12

Slow link

Benefit of ACK Clocking

•ACKs repeat the spread back to the sender

CSE 461 University of Washington 13

Slow link

Acks maintain spread

Benefit of ACK Clocking

•Sender clocks new segments with the spread
• Now sending at the bottleneck link capacity without

queuing!

CSE 461 University of Washington 14

Slow link

Segments spread Queue no longer builds

Benefit of ACK Clocking

•Helps run with low levels of loss and delay!

•The network smooths out the burst of data segments

•ACK clock transfers this smooth timing back to sender
• “just happens”

•Subsequent data segments are not sent in bursts so do
not queue up in the network

CSE 461 University of Washington 15

TCP Uses ACK Clocking

•TCP manages offered load using a sliding window

•Sliding window controls how many segments are
inside the network
• Called the congestion window, or cwnd
• (As always, rate is roughly cwnd/RTT)

•TCP sends only small bursts of segments to let the
network keep the traffic smooth

CSE 461 University of Washington 16

TCP Slow Start

Practical AIMD

•We want TCP to follow an AIMD control law for a
good allocation

•Sender uses a congestion window or cwnd to set its
rate (≈cwnd/RTT)

•Sender uses loss as network congestion signal

•Need TCP to work across a very large range of rates
and RTTs

CSE 461 University of Washington 18

TCP Startup Problem

•We want to quickly near the right rate, cwndIDEAL, but
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the

network (loss!)
• Additive Increase with small bursts adapts cwnd gently to

the network, but might take a long time to become
efficient

CSE 461 University of Washington 19

Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)

• Start slow, quickly reach large values

20

AI

TimeW
in

d
o

w
 (

cw
n

d
)

Slow-start

Flow control
widow

Slow-Start Solution

• Start very conservatively and ramp up quickly
• Eventually packet loss will occur when the network is

congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 21

Slow-Start Solution (3)

•Combined behavior, after first time
• Most time spend near right value

22

AI

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 23

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 24

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK

• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

CSE 461 University of Washington 25

Timeout Misfortunes

•Why do a slow-start after timeout?
• Instead of MD cwnd (for AIMD)

•Timeouts are sufficiently long that the ACK clock will
have run down
• Slow-start ramps up the ACK clock

•We need to detect loss before a timeout to get to
full AIMD

CSE 461 University of Washington 26

TCP Fast Recovery

Practical AIMD

•We want TCP to follow an AIMD control law for a
good allocation

•Sender uses a congestion window or cwnd to set its
rate (≈cwnd/RTT)

•Sender uses slow-start to ramp up the ACK clock,
followed by Additive Increase

•But after a timeout, sender slow-starts again with
cwnd=1 (as it has no ACK clock)

CSE 461 University of Washington 28

Inferring Loss from ACKs

•TCP uses a cumulative ACK
• Carries highest in-order seq. number

• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t
arrived
• Tell us some new data did arrive, but it was not next

segment

• Thus the next segment may be lost

CSE 461 University of Washington 29

Fast Retransmit

•Treat three duplicate ACKs as a loss signal
• Retransmit next expected segment

• Some repetition allows for reordering, but still detects loss
quickly

CSE 461 University of Washington 30

Ack 1 2 3 4 5 5 5 5 5 5

Fast Retransmit

CSE 461 University of Washington 31

Ack 10
Ack 11
Ack 12
Ack 13

. . .

Ack 13

Ack 13
Ack 13

Data 14. . .
Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14 Retransmission fills

in the hole at 14
ACK jumps after
loss is repaired

.

Data 14 was lost
earlier, but got

15 to 20

Fast Retransmit

• It can repair single segment loss quickly, typically
before a timeout

•However, we have quiet time at the sender/receiver
while waiting for the ACK to jump

•And we still need to MD cwnd …

CSE 461 University of Washington 32

Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data
has arrived
• Each new duplicate ACK means that some new segment

has arrived
• It will be the segments after the loss

• Thus advancing the sliding window will not increase the
number of segments in transit in the network

CSE 461 University of Washington 33

Fast Recovery

•First fast retransmit, and MD cwnd

•Then pretend further duplicate ACKs are the
expected ACKs
• Lets new segments be sent for ACKs
• Reconcile views when the ACK jumps

CSE 461 University of Washington 34

Ack 1 2 3 4 5 5 5 5 5 5

Fast Recovery

CSE 461 University of Washington 35

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20

.

Data 20
Third duplicate
ACK, so send 14

Data 14 was lost
earlier, but got

15 to 20

Retransmission fills
in the hole at 14

Set ssthresh,
cwnd = cwnd/2

Data 21

Data 22

More ACKs advance
window; may send

segments before jump

Ack 13

Exit Fast Recovery

Fast Recovery

•With fast retransmit, it repairs a single segment loss
quickly and keeps the ACK clock running

•This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a

smaller cwnd

•TCP Reno combines slow-start, fast retransmit and
fast recovery
• Multiplicative Decrease is ½

CSE 461 University of Washington 36

TCP Reno

CSE 461 University of Washington 37

MD of ½ , no slow-start

ACK clock
running

TCP sawtooth

TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
• Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit

without guesswork

CSE 461 University of Washington 38

Network-Side
Congestion Control

Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid
congestion altogether!
• Reduces loss and delay

•But how can we do this?

CSE 461 University of Washington 40

Random Early Detection (RED)

• When router’s buffer is filling, drop TCP packets at random
• TCP flow takes the dropped packet as a loss and slows down

• Note this scheme relies only on TCP characteristics
• Don’t have to modify headers or require that all routers support it

• Drop at random, depending on queue size
• If queue empty, accept packet always
• If queue full, always drop
• As queue approaches full, increase likelihood of packet drop

• Example: 1 queue slot left, 10 packets expected, 90% chance of drop

• When you pick a packet at random to drop, which flow is it most likely
to belong to?

RED (Random Early Detection)

•Router detects the onset of congestion via its queue
• Prior to congestion, drop a packet to signal

CSE 461 University of Washington 42

Drop packet

RED (Random Early Detection)

•Sender enters MD, slows packet flow
•We shed load, everyone is happy

CSE 461 University of Washington 43

Drop packet

ECN (Explicit Congestion Notification)

• Idea: to send feedback to sender, RED drops a
packet
• Why not deliver the packet, but “set a bit” in it indicating that the

packet has encountered a congested router?

• The problems:
• What bit?
• The packet is headed to the receiver, but notification needs to go

to the sender

CSE 461 University of Washington 44

ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
• When congested, it marks affected packets (IP header)

CSE 461 University of Washington 45

ECN

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion

CSE 461 University of Washington 46

ECN

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion

CSE 461 University of Washington 47

Marked ACK segment

ECN

•Advantages:
• Routers deliver clear signal to hosts

• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded

CSE 461 University of Washington 48

