
Transport Layer (TCP/UDP)



Where we are in the Course

•Moving down to the Transport Layer!
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The Transport Layer
• The transport layer provides end-to-end connectivity

• To the transport layer, its payload is just bytes
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Encapsulation
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Transport Layer Services

•Provide different kinds of data delivery across the 
network to applications

• Could there be protocols in the two empty boxes?
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Comparison of Internet Transports: Function

CSE 461 University of Washington 6

TCP UDP

Streams Datagrams

Connections Connectionless

Bytes are delivered to 
receiving app reliably (once, 

and in order)

Packets may be lost, 
reordered, duplicated

(but not corrupted)

Arbitrary length content Fixed maximum datagram 
size



Comparison of Internet Transports: 
Performance
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TCP UDP

Connection latency No delay

Segment delivery latency 
(“nagling”)

Datagram is sent now

Flow control matches 
sender’s rate to receiver’s 

capability

No flow control
(can lead to many lost 

datagrams)

Congestion control matches 
sender’s rate to network’s 

capability

No congestion control
(can lead to many lost 

datagrams)



Socket API

• Simple OS abstraction to use the network
• The “network” API (really Transport service) used to write all Internet apps

• Part of all major OSes and languages; originally Berkeley (Unix) ~1983

• Supports both Internet transport services (TCP and UDP)

• The OS provides sockets; the Internet provides the port 
abstraction
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Socket API
• Sockets are associated with (“bound to”) Internet 

ports
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Socket,
Port #1

Socket,
Port #2



Socket API
Same API used for Streams and Datagrams
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Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND(TO) Send some data over the socket

RECEIVE(FROM) Receive some data over the socket

CLOSE Release the socket

Only needed 
for Streams

To/From for 
Datagrams

Note: A language layer can obscure this interface



Ports
• Application process is identified by the tuple 

<IP address, protocol, and port>
• Ports are 16-bit integers representing local “mailboxes” that a process leases

• Servers often bind to “well-known ports”
• numbered below 1024

• require administrative privileges  (“privileged ports”)

• Clients often assigned “ephemeral” ports
• Chosen by OS, used temporarily 
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Some Well-Known Ports
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Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet

25 SMTP Email

80 HTTP World Wide Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure Web (HTTP over SSL/TLS)

543 RTSP Media player control

631 IPP Printer sharing



Topics
• Service models

• Socket API and ports

• Datagrams, Streams

• User Datagram Protocol (UDP)

• Connections (TCP)

• Sliding Window (TCP)

• Flow control (TCP)

• Retransmission timers (TCP)

• Congestion control (TCP)
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UDP



User Datagram Protocol (UDP)

•Used by apps that don’t want TCP semantics or for 
which TCP performance characteristics are 
unacceptable
• Voice-over-IP 

• DNS, RPC 

• DHCP

(If application wants reliability and messages then it has work 
to do!)
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Datagram Sockets
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Client (host 1) Server (host 2)Time

request

reply



Datagram Sockets
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Client (host 1) Server (host 2)Time

1: socket
2: bind

1: socket

6: sendto

3: recvfrom*
4: sendto

5: recvfrom*

7: close 7: close

*= call blocks

request

reply

The protocol implied
by this diagram is
horribly broken!



UDP Buffering
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UDP Header
• Uses ports to identify sending and receiving application 

processes

• Datagram length limited to 64K

• Checksum (16 bits) for reliability
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UDP header



UDP Header

• Optional checksum covers UDP segment and IP 
pseudoheader
• Checks key IP fields (addresses)

• Value of zero means “no checksum”
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Internet Checksum

• Idea: 
• sender sums up data in N-bit words

• results in a 16-bit value that is a function of the data

• receiver performs same summation
• if value receiver computes doesn’t match value sent by 

sender, the packet has been corrupted
• Widely used in, e.g., TCP/IP/UDP
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic (must 
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------

ddf2 

220d 
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Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf1 

ddf1 
+    2 
------

ddf3 

220c 

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum
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Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------

ffff

0000 
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Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------

ffff

0000 



(Pre-TCP) 

Reliability and Retransmissions



Context on Reliability

•Where in the stack should we place reliability?
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Context on Reliability (2)

•Everywhere! It is a key issue
• Different layers contribute differently
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Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application



ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be 
corrected
• E.g., WiFi (common) and TCP (must correct)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an ACK

• positive acknowledgements

• Sender automatically resends after a timeout

• Keep re-sending until an ACK is received
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ARQ

•Normal operation (no loss)
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Frame

ACK
Timeout Time

Sender Receiver



ARQ

• Loss and retransmission
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ACK

Frame

Timeout Time

Sender Receiver

Frame

X



So What’s Tricky About ARQ?

•Two non-trivial issues:
• How long to set the timeout? 

• How to avoid accepting duplicate frames as new frames 

•Want performance in the common case and 
correctness always
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Timeouts

• Timeout should be:
• Not too big (link goes idle)

• Not too small (spurious resend)

• Fairly easy on a LAN
• Clear worst case, little variation

• Fairly difficult over the Internet
• Much variation, no obvious bound

• We’ll revisit this with TCP (later)
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Duplicates

•What happens if an ACK is lost?
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Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver



Duplicates

•What happens if
the timeout is early?
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Frame

ACK

Frame

ACK

Timeout

Sender Receiver



Duplicates

•What happens if
the timeout is early?
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Frame

ACK

Frame

ACK

Timeout

Sender Receiver

Which frame is this ACK ACK’ing?



Sequence Numbers

•For correctness, frames and ACKs must both carry 
sequence numbers

•At an extreme, to distinguish the current frame from 
the next one, a single bit (two numbers) is sufficient
• Called Stop-and-Wait protocol

• In general, the number of packets that can be in flight is 
limited to half the range of the sequence numbers
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Stop-and-Wait

• In the normal case:
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Time

Sender Receiver



Stop-and-Wait (2)

• In the normal case:
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Stop-and-Wait (3)

•With ACK loss:
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X

Frame 0

ACK 0
Timeout

Sender Receiver



Stop-and-Wait (4)

•With ACK loss:
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Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a 
Resend!



Stop-and-Wait (5)

•With early timeout:
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ACK 0

Frame 0

Timeout

Sender Receiver



Stop-and-Wait (6)

•With early timeout:
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Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …



Limitation of Stop-and-Wait

• It allows only a single frame to be outstanding from 
the sender:
• Good for LAN, not efficient for high latency communication

•Ex: R=1 Mbps, D = 50 ms
• How many frames/sec? If R=10 Mbps?
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Sliding Window

•Generalization of stop-and-wait
• Allows W frames to be outstanding
• Can send W frames per round trip time (=2D)

• Various options for numbering frames/ACKs and handling 
loss
• Will look at along with
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TCP



TCP Header
From https://nmap.org/book/tcpip-ref.html



TCP Protocol

• TCP Consists of 3 primary phases:
• Connection Establishment (Setup)

• Sliding Windows/Flow Control

• Connection Release (Teardown)



Connection Establishment

•Both sender and receiver must be ready before we 
start the transfer of data
• Need to agree on a set of parameters

• e.g., the Maximum Segment Size (MSS)

• This is signaling
• It sets up state at the endpoints

• Like “dialing” for a telephone call
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Three-Way Handshake
• Used in TCP; opens connection for 

data in both directions

• Each side probes the other with a 
fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment

• Echo on an ACKnowledge segment

• Chosen to be robust even against 
delayed duplicates

Active party
(client)

Passive party
(server)
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Three-Way Handshake (2)

•Three steps:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)

• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

•Sequence and ack numbers carried 
on further segments

1

2

3

Active party
(client)

Passive party
(server)

Time
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Three-Way Handshake (3)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)
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Three-Way Handshake (4)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

•Connection will be cleanly 
rejected on both sides ☺

Active party
(client)

Passive party
(server)

X

X
REJECT

REJECT



TCP Connection State Machine
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Both parties 
run instances 
of this state 

machine



TCP Release

•Follow the active party
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TCP Release

•Follow the passive party
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TCP Release

•Again, with states …
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1

2

CLOSED

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED



TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent 

for an orderly close
• Could otherwise interfere with a subsequent connection
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Flow Control



Recall

•ARQ with one message at a time is Stop-and-Wait 
(normal case below)
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Limitation of Stop-and-Wait

• It allows only a single message to be outstanding 
from the sender:
• Fine for LAN (only one frame fit)
• Not efficient for network paths with BD >> 1 packet
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Limitation of Stop-and-Wait (2)

•Example: R=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms

• How many packets/sec? 

• What if R=10 Mbps?
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Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance 
• Need W=2BD to fill network path
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Sliding Window (2)

• What W will use the network capacity?

• Ex: R=1 Mbps, D = 50 ms

• Ex: What if R=10 Mbps?
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Sliding Window (3)

•Ex: R=1 Mbps, D = 50 ms
• 2BD = 106 b/sec x 100. 10-3 sec = 100 kbit
• W = 2BD = 10 packets of 1250 bytes

•Ex: What if R=10 Mbps?
• 2BD = 1000 kbit
• W = 2BD = 100 packets of 1250 bytes
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Sliding Window Protocol

•Many variations, depending on how buffers, 
acknowledgements, and retransmissions are 
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
• More complex, better performance
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Sliding Window – Sender 

•Sender buffers up to W segments until they are 
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W 
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.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window



Sliding Window – Sender (2) 

•Transport accepts another segment of data from the 
Application ...
• Transport sends it (as LFS–LAR  5)
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.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Sent

seq. number
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Window
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Sliding Window – Sender (3) 

•Next higher ACK arrives from peer…
• Window advances, buffer is freed 
• LFS–LAR  4 (can send one more) 
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Available

seq. number
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Window
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Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the 
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update 

LAS, send ACK
• Otherwise discard (as out of order)
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Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments

• TCP uses a selective repeat design; we’ll see the details later
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Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST

ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W] 
• Send app in-order segments from LAS+1, and update LAS

• Send ACK for LAS regardless

CSE 461 University of Washington 73



Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets  starting at LAR+1

•Selective Repeat uses a timer per unacked segment 
to detect losses
• On timeout for segment, resend it

• Hope to resend fewer segments
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Sequence Numbers

•Need more than 0/1 for Stop-and-Wait …
• But how many?

• For Selective Repeat, need W numbers for packets, plus 
W for acks of earlier packets
• 2W seq. numbers
• Fewer for Go-Back-N (W+1)

•Typically implement seq. number with an N-bit 
counter that wraps around at 2N—1 
• E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …
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Sequence Time Plot

CSE 461 University of Washington 76

Time

Se
q

. 
N

u
m

b
er

Acks
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)



Sequence Time Plot (2)
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Sequence Time Plot (3)
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Problem

•Sliding window has pipelining to keep network busy
• What if the receiver is overloaded?
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Streaming video

Big Iron Wee Mobile

Arg …



Sliding Window – Receiver 

•Consider receiver with W buffers
• LAS=LAST ACK SENT, app pulls in-order data from buffer with 

recv() call
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Sliding
Window

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable



Sliding Window – Receiver (2) 

•Suppose the next two segments arrive but app does 
not call recv()
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.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable



Sliding Window – Receiver (3) 

•Suppose the next two segments arrive but app does 
not call recv()
• LAS rises, but we can’t slide window!
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.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acked



Sliding Window – Receiver (4) 

•Further segments arrive (in order) we fill buffer 
• Must drop segments until app recvs!
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Nothing
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Sliding Window – Receiver (5) 

•App recv() takes two segments
• Window slides (phew)
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Flow Control

•Avoid loss at receiver by telling sender the available 
buffer space
• WIN=#Acceptable, not W (from LAS)
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Acceptable

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..

seq. number

555 5Acked

LAS



Flow Control (2)

•Sender uses lower of the sliding window and flow 
control window (WIN) as the effective window size
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Acceptable

.. 5 6 7 5 2 3 ..
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W=3

Finished 3 ..Too high

seq. number
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Flow Control (3)

•TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN

• SEQ + length < ACK+WIN

• 4KB buffer at receiver

• Circular buffer of bytes



Topic

•How to set the timeout for   sending a 
retransmission
• Adapting to the network path
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Lost?

Network



Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent

• Cancel timer when ack is received
• If timer fires, retransmit data as lost
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Retransmit!



Timeout Problem

•Timeout should be “just right”
• Too long wastes network capacity
• Too short leads to spurious resends
• But what is “just right”?

•Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

•Hard on the Internet (Transport)
• Wide range, variable RTT

CSE 461 University of Washington 90



Example of RTTs
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Example of RTTs (2)
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Example of RTTs (3)
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Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average

1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1

2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice

• TCP TimeoutN = SRTTN + 4*SvarN
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Example of Adaptive Timeout
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Example of Adaptive Timeout (2)

CSE 461 University of Washington 96

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

R
T

T 
(m

s)

Timeout (SRTT + 4*Svar)

Early
timeout

Seconds



Adaptive Timeout (2)

•Simple to compute, does a good  job of tracking 
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance 
and robustness
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