
2- Application Level Protocols
HTTP 1.0/1.1/2

HTTP, (HyperText Transfer Protocol)

• Basis for fetching Web pages

CSE 461 University of Washington 2

request

Network

CSE 461 University of Washington 3

Sir Tim Berners-Lee (1955–)

• Inventor of the Web

– Dominant Internet app since mid 90s

– He now directs the W3C

• Developed Web at CERN in ‘89

– Browser, server and first HTTP

– Popularized via Mosaic (‘93), Netscape

– First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons

Web Context

CSE 461 University of Washington 4

HTTP request

HTTP response

Page as a set of
related HTTP
transactions

Web Protocol Context

• HTTP is a request/response protocol for
fetching Web resources
– Runs on TCP, typically port 80

• HTTPS typically on port 443

– Part of browser/server app

TCP

IP

802.11

browser

HTTP

TCP

IP

802.11

server

HTTP

request

response

Static vs Dynamic Web pages

• Static web page is a file contents, e.g., image
• Dynamic web page is the result of program execution

– Javascript on client, PHP on server, or both

CSE 461 University of Washington 6

HTTP Protocol
• Originally a simple protocol, with many options

added over time

• HTTP transports typed data

– TCP transports bytes

• HTTP is a request-response protocol

– Client sends request message, server sends response
message

• HTTP messages have a header and a payload section

• Header is encoded as text

• HTTP is carried over a TCP

CSE 461 University of Washington 7

Fetching a Web Page From a Browser

• Browser starts with the page URL:

http://en.wikipedia.org/wiki/Vegemite

• Browser steps:

– Resolve the server name to an IP address (DNS)

– Set up a TCP connection to the server

– Send HTTP request for the page

– Wait for and then read HTTP response

– (Assuming no errors) Process response data and render page

– Clean up any idle TCP connections

CSE 461 University of Washington 8

Protocol Page on serverServer

HTTP Message Format

Special command line\r\n

Tag: value\r\n

Tag: value\r\n

...

Tag: value\r\n

\r\n

<payload>

• Header is encoded as text
• Header is a sequence of lines
• Each line ends with \r\n
• Header ends with \r\n\r\n

• Payload length is given by either:
• Content-length tag in header
• Payload is encoded in a format

that uses a sentinel (special value
that marks the end)

Try It Yourself: View HTTP Request

• $ nc –l 8080
Opens a TCP socket on port 8080 and waits for an
incoming connection

• Point a browser running on the same machine to
http://localhost:8080/first/second/third.html

• The output of the nc window is the HTTP request
sent by the browser

Example HTTP Request

$ nc -l 8080

GET /first/second/third.html HTTP/1.1

Host: localhost:8080

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36

Upgrade-Insecure-Requests: 1

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/a
png,*/*;q=0.8

DNT: 1

Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.8

What the browser sent

Try It Yourself: HTTP Response
$ nc www.washington.edu 80
GET / HTTP/1.0
Host: www.washington.edu

HTTP/1.1 200 OK
Date: Tue, 10 Oct 2017 15:58:14 GMT
Server: Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26
mod_pubcookie/3.3.4a mod_uwa/3.2.1
Last-Modified: Mon, 09 Oct 2017 21:45:12 GMT
ETag: "180cd3-c459-55b241ae94a00"
Accept-Ranges: bytes
Content-Length: 50265
Vary: Accept-Encoding,User-Agent
Connection: close
Content-Type: text/html

<!DOCTYPE html><html class="no-js"><head><meta content="IE=edge" http-equiv="X-UA-
Compatible"/><title> UW Homepage </title><meta charset="utf-8"/><meta
content="University of Washington" name="d.... <50265 bytes of data in all>

request

response

Try It Yourself: HTTP Response 2
$ nc uw.edu 80

GET / HTTP/1.0

Host: uw.edu

HTTP/1.1 301 Moved Permanently

Date: Tue, 10 Oct 2017 16:04:20 GMT

Server: Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26 mod_pubcookie/3.3.4a mod_uwa/3.2.1

Location: http://www.washington.edu/

Vary: Accept-Encoding

Content-Length: 385

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</h1>

<p>The document has moved here.</p>

<hr>

<address>Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26 mod_pubcookie/3.3.4a mod_uwa/3.2.1 Server at uw.edu
Port 80</address>

</body></html>

HTTP Protocol

Commands used in the request

Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct

HTTP Protocol

Result codes returned with the response

CSE 461 University of Washington 15

Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!

PERFORMANCE

Performance Measure: PLT
(Page Load Time)

• PLT is the key measure of web performance
– From click until user sees page

• PLT depends on many factors
– Structure of page/content

– HTTP (and TCP!) protocol

– Network RTT and bandwidth

CSE 461 University of Washington 17

v.

Page Load Time Impact

From How One Second Could Cost Amazon $1.6 Billion In Sales, March 15, 2012
https://www.fastcompanycom/1825005/how-one-second-could-cost-amazon-16-billion-sales

CSE 461 University of Washington 20

HTTP 1.0 (1996)

• HTTP/1.0 uses one TCP connection
to fetch one web resource
– Made HTTP very easy to build

– But gave fairly poor PLT …

• Framing?
– Length?

– Sentinel?

CSE 461 University of Washington 21

HTTP 1.0

• Many reasons why PLT is larger than
necessary

– Sequential request/responses, even when to
different servers

– Multiple TCP connection setups to the same
server

Parallel Connections

• One simple way to reduce PLT
– Browser runs multiple (8, say) HTTP instances in

parallel

– Server is unchanged; already handled concurrent
requests for many clients

• How does this help?
– Single HTTP wasn’t using network much …

– So parallel connections aren’t slowed much

– Pulls in completion time of last fetch

CSE 461 University of Washington 22

HTTP 1.1 (1997)
Persistent Connections

• Parallel connections compete with each other
for network resources
– 1 parallel client ≈ 8 sequential clients?

– Exacerbates network bursts, and loss

• Persistent connection alternative
– Make 1 TCP connection to 1 server

– Use it for multiple HTTP requests

CSE 461 University of Washington 23

Persistent Connections

CSE 461 University of Washington 24

One request per
connection

Sequential
requests per
connection

Pipelined
requests per
connection

Persistent Connections: Framing

• How are requests and responses framed?

– Enforce use of content-length header field?
• What if content is dynamically generated?

– If not that, then what?

Persistent Connections

• Widely used as part of HTTP/1.1
– Supports optional pipelining (?)

– PLT benefits depending on page structure, but easy on
network

• How can we reduce PLT even more?

CSE 461 University of Washington 26

HTTP 2 (2015)

• HTTP 2 preserves the semantics of HTTP 1.0 / 1.1

– Client still says GET and server still responds OK

• However, the requests are

– encoded differently (compressed)

– transferred differently (streams and frames)

• IETF RFC 7540, May 2015

– Successor to Google’s SPDY protocol

HTTP 2

TCP

IP

802.11

browser

HTTP 1.1

TCP

IP

802.11

server

HTTP 1.1

request

response
HTTP 2 HTTP 2

This is the idea of how HTTP 2 fits in. A particular implementation
might well combine HTTP 1.1 and HTTP 2

HTTP 2 – Main Features

• Allows “real pipelining” of requests on persistent connections
– We have to “name” each request explicitly so that we can match

responses to requests
• Why can’t we use ordering?

• Headers have gotten big
– compress headers

• Servers can supply data that wasn’t requested
– “server push”

• Clients can advertise priorities among their requests

Note: “real pipelining” allows the server to apply its own idea of
priority, since it doesn’t have to reply in order

HTTP 2 – Streams and Frames

• A connection is a TCP connection between client and
server

– long lived, just like HTTP 1.1

• A stream is an ordered, bidirectional flow of
information between client and server

• There is one connection between a client and server

• There is (roughly) one stream per HTTP request

HTTP 2 – Streams & Frames

Streams

• Each stream has a unique ID

– Successive stream IDs must be increasing

– When run out of stream IDs, have to create a new
connection

• Race condition if both ends try to create stream IDs

– Solution: “client” uses odd numbers, server uses evens

• A stream is created by sending a frame with a new
stream ID

Frame Types

Simples encoding of an HTTP request

• Send a HEADER frame followed by zero or more
CONTINUATION frames

– Set END_HEADERS flag on last one

• Send DATA frames for request data, if needed

– Set END_STREAM flag on last

• Response is the same, in reverse

Frame Header

• Length: length of payload
– header is always 9 bytes

• Type: frame type
• Flags: depends on type
• R: reserved; “must be unset when sending and ignored when receiving”
• Stream ID: 0x0 is reserved for frames associated with the connection

(not an individual stream)

HEADER frame

• Padding is for security – obfuscate lengths
• Stream dependency – make this stream a child of named stream

• If server can’t make progress on parent, assign resources proportional
to weights to children

• Header block fragment – take the HTTP 1.1 header and compress it, then
send it in chunks (if necessary)

• Frame header flags: END_HEADERS and END_STREAM

DATA Frame

PRIORITY Frame

• E: exclusive bit – inserts this stream as only child of parent stream, moving
existing children to be children of this stream

RST_STREAM Frame

• Ends a stream

– Why is this useful?
• Also have END_STREAM flag bit...

GOAWAY Frame

• Closes connection

• Provides largest id of any stream that the server may
have acted on
– Why?

PUSH_PROMISE Frame

• Allows server to send something not yet asked for
– E.g., a style sheet or a javascript program or an embedded

image

• Acts like a HEADERS frame
– Can have CONTINUATIONs following for more header

PING Frame

• Is other end still there?
– Responds with PING with ACK flag bit set

• Measure latency to other end
– PING frames have highest priority...

WINDOW_UPDATE Frame

• TCP does flow control on entire connection

– but need flow control on a per stream basis as well

Getting There From Here

• HTTP 2 is supposed to be an optimized transport of
HTTP requests

– Needs to be backward compatible with HTTP 1/1.1

• Main problem:

– How to tell if client and server can both speak HTTP 2?
• Client could try HTTP 2 and then revert to 1.1

• Client could start with HTTP 1.1 then upgrade to 2

Dynamically Upgrading to HTTP 2

• Client:

GET / HTTP/1.1

Host: server.example.com

Connection: Upgrade, HTTP2-Settings

Upgrade: h2c

HTTP2-Settings: <base64url encoding of HTTP/2

SETTINGS payload>

Server Refuses Upgrade

• Server may simply not recognize the upgrade request
if it isn’t HTTP 2 capable

HTTP/1.1 200 OK

Content-Length: 243

Content-Type: text/html

...

Server Wants to Upgrade

HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: h2c

[HTTP/2 connection ...

HTTP 2 Wrap-up

Web Caching

• Users often revisit web pages
– Big win from reusing local copy!
– This is caching

• Key question:
– When is it OK to reuse local copy?

CSE 461 University of Washington 49

NetworkCache

Local copies

Server

Web Caching (2)

• Locally determine copy is still valid
– Based on expiry information such as “Expires”

header from server
– Or use a heuristic to guess (cacheable, freshly

valid, not modified recently)
– Content is then available right away

CSE 461 University of Washington 50

NetworkCache
Server

Web Caching (3)

• Revalidate copy with remote server
– Based on timestamp of copy such as “Last-Modified”

header from server
– Or based on content of copy such as “Etag” server header
– Content is available after 1 RTT

CSE 461 University of Washington 51

NetworkCache
Server

Web Caching (4)

• Putting the pieces together:

CSE 461 University of Washington 52

Web Proxies

• Place intermediary between pool of clients and
external web servers

– Benefits for clients include caching and security checking

– Organizational access policies too!

• Proxy caching

– Clients benefit from larger, shared cache

– Benefits limited by secure / dynamic content, as well as
“long tail”

CSE 461 University of Washington 53

Web Proxies

• Clients contact proxy; proxy contacts server

CSE 461 University of Washington 54

Cache

Near client

Far from client

Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and grew.
This:

1. Concentrated load on popular servers

2. Led to congested networks and need to provision more
bandwidth

3. Gave a poor user experience

• Idea:
– Place popular content near clients

– Helps with all three issues above

CSE 461 University of Washington 55

Before CDNs

• Sending content from the source to 4 users
takes 4 x 3 = 12 “network hops” in the
example

CSE 461 University of Washington 56

Server

User

User

. . .

After CDNs

• Sending content via replicas takes only 4 + 2 =
6 “network hops”

CSE 461 University of Washington 57

Server

User

User

. . .

Replica

After CDNs

• Benefits assuming popular content:
– Reduces server, network load
– Improves user experience (PLT)

CSE 461 University of Washington 58

Source

User

User

. . .

Replica

CSE 461 University of Washington 59

Popularity of Content

• Zipf’s Law: few popular items, many
unpopular ones; both matter

Zipf popularity
(kth item is ~1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)

How to place content near clients?

• Use browser and proxy caches
– Helps, but limited to one client or clients in one

organization

• Want to place replicas across the Internet for
use by all nearby clients
– Done by clever use of DNS

CSE 461 University of Washington 60

Content Delivery Network

CSE 461 University of Washington 61

Content Delivery Network (2)

• DNS gives different answers to clients
– Tell each client the nearest replica (map client IP)

CSE 461 University of Washington 62

Business Model

• Clever model pioneered by Akamai
– Placing site replica at an ISP is win-win
– Improves site experience and reduces ISP bandwidth

usage

CSE 461 University of Washington 63

Consum
er

site

ISP

User

User

. . .

Replica

