
2- Application Level Protocols
HTTP 1.0/1.1/2



HTTP, (HyperText Transfer Protocol)

• Basis for fetching Web pages
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Sir Tim Berners-Lee (1955–) 

• Inventor of the Web

– Dominant Internet app since mid 90s

– He now directs the W3C

• Developed Web at CERN in ‘89

– Browser, server and first HTTP

– Popularized via Mosaic (‘93), Netscape

– First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons



Web Context 

CSE 461 University of Washington 4

HTTP request

HTTP response

Page as a set of 
related HTTP 
transactions



Web Protocol Context

• HTTP is a request/response protocol for 
fetching Web resources
– Runs on TCP, typically port 80

• HTTPS typically on port 443

– Part of browser/server app
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Static vs Dynamic Web pages

• Static web page is a file contents, e.g., image
• Dynamic web page is the result of program execution

– Javascript on client, PHP on server, or both 
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HTTP Protocol
• Originally a simple protocol, with many options 

added over time

• HTTP transports typed data

– TCP transports bytes

• HTTP is a request-response protocol

– Client sends request message, server sends response 
message

• HTTP messages have a header and a payload section

• Header is encoded as text

• HTTP is carried over a TCP
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Fetching a Web Page From a Browser

• Browser starts with the page URL:

http://en.wikipedia.org/wiki/Vegemite

• Browser steps:

– Resolve the server name to an IP address (DNS)

– Set up a TCP connection to the server

– Send HTTP request for the page

– Wait for and then read HTTP response

– (Assuming no errors) Process response data and render page

– Clean up any idle TCP connections
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HTTP Message Format

Special command line\r\n

Tag: value\r\n

Tag: value\r\n

...

Tag: value\r\n

\r\n

<payload>

• Header is encoded as text
• Header is a sequence of lines
• Each line ends with \r\n
• Header ends with \r\n\r\n

• Payload length is given by either:
• Content-length tag in header
• Payload is encoded in a format 

that uses a sentinel (special value 
that marks the end)



Try It Yourself: View HTTP Request

• $ nc –l 8080
Opens a TCP socket on port 8080 and waits for an 
incoming connection

• Point a browser running on the same machine to 
http://localhost:8080/first/second/third.html

• The output of the nc window is the HTTP request 
sent by the browser



Example HTTP Request

$ nc -l 8080

GET /first/second/third.html HTTP/1.1

Host: localhost:8080

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36

Upgrade-Insecure-Requests: 1

Accept: 
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/a
png,*/*;q=0.8

DNT: 1

Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.8

What the browser sent



Try It Yourself: HTTP Response
$ nc www.washington.edu 80
GET / HTTP/1.0
Host: www.washington.edu

HTTP/1.1 200 OK
Date: Tue, 10 Oct 2017 15:58:14 GMT
Server: Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26 
mod_pubcookie/3.3.4a mod_uwa/3.2.1
Last-Modified: Mon, 09 Oct 2017 21:45:12 GMT
ETag: "180cd3-c459-55b241ae94a00"
Accept-Ranges: bytes
Content-Length: 50265
Vary: Accept-Encoding,User-Agent
Connection: close
Content-Type: text/html

<!DOCTYPE html><html class="no-js"><head><meta content="IE=edge" http-equiv="X-UA-
Compatible"/><title> UW Homepage </title><meta charset="utf-8"/><meta 
content="University of Washington" name="d.... <50265 bytes of data in all>

request

response



Try It Yourself: HTTP Response 2
$ nc uw.edu 80

GET / HTTP/1.0

Host: uw.edu

HTTP/1.1 301 Moved Permanently

Date: Tue, 10 Oct 2017 16:04:20 GMT

Server: Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26 mod_pubcookie/3.3.4a mod_uwa/3.2.1

Location: http://www.washington.edu/

Vary: Accept-Encoding

Content-Length: 385

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</h1>

<p>The document has moved <a href="http://www.washington.edu/">here</a>.</p>

<hr>

<address>Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/1.0.1e-fips PHP/5.6.26 mod_pubcookie/3.3.4a mod_uwa/3.2.1 Server at uw.edu 
Port 80</address>

</body></html>



HTTP Protocol

Commands used in the request

Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct



HTTP Protocol

Result codes returned with the response
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Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!



PERFORMANCE



Performance Measure: PLT 
(Page Load Time)

• PLT is the key measure of web performance 
– From click until user sees page

• PLT depends on many factors
– Structure of page/content

– HTTP (and TCP!) protocol

– Network RTT and bandwidth
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Page Load Time Impact

From How One Second Could Cost Amazon $1.6 Billion In Sales, March 15, 2012
https://www.fastcompanycom/1825005/how-one-second-could-cost-amazon-16-billion-sales
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HTTP 1.0  (1996)

• HTTP/1.0 uses one TCP connection 
to fetch one web resource
– Made HTTP very easy to build

– But gave fairly poor PLT …

• Framing?
– Length?

– Sentinel?
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HTTP 1.0

• Many reasons why PLT is larger than 
necessary

– Sequential request/responses, even when to 
different servers

– Multiple TCP connection setups to the same 
server



Parallel Connections

• One simple way to reduce PLT
– Browser runs multiple (8, say) HTTP instances in 

parallel

– Server is unchanged; already handled concurrent 
requests for many clients

• How does this help?
– Single HTTP wasn’t using network much …

– So parallel connections aren’t slowed much

– Pulls in completion time of last fetch

CSE 461 University of Washington 22



HTTP 1.1 (1997)
Persistent Connections

• Parallel connections compete with each other 
for network resources
– 1 parallel client ≈ 8 sequential clients?

– Exacerbates network bursts, and loss

• Persistent connection alternative
– Make 1 TCP connection to 1 server

– Use it for multiple HTTP requests
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Persistent Connections

CSE 461 University of Washington 24

One request per 
connection

Sequential 
requests per 
connection

Pipelined 
requests per 
connection



Persistent Connections: Framing

• How are requests and responses framed?

– Enforce use of content-length header field?
• What if content is dynamically generated?

– If not that, then what?



Persistent Connections

• Widely used as part of HTTP/1.1
– Supports optional pipelining (?)

– PLT benefits depending on page structure, but easy on 
network

• How can we reduce PLT even more?
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HTTP 2 (2015)

• HTTP 2 preserves the semantics of HTTP 1.0 / 1.1

– Client still says GET and server still responds OK

• However, the requests are

– encoded differently (compressed)

– transferred differently (streams and frames)

• IETF RFC 7540, May 2015

– Successor to Google’s SPDY protocol



HTTP 2

TCP

IP

802.11

browser

HTTP 1.1

TCP

IP
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HTTP 1.1

request

response
HTTP 2 HTTP 2

This is the idea of how HTTP 2 fits in.  A particular implementation
might well combine HTTP 1.1 and HTTP 2



HTTP 2 – Main Features

• Allows “real pipelining” of requests on persistent connections
– We have to “name” each request explicitly so that we can match 

responses to requests
• Why can’t we use ordering?

• Headers have gotten big
– compress headers

• Servers can supply data that wasn’t requested
– “server push”

• Clients can advertise priorities among their requests

Note: “real pipelining” allows the server to apply its own idea of 
priority, since it doesn’t have to reply in order



HTTP 2 – Streams and Frames

• A connection is a TCP connection between client and 
server

– long lived, just like HTTP 1.1

• A stream is an ordered, bidirectional flow of 
information between client and server

• There is one connection between a client and server

• There is (roughly) one stream per HTTP request



HTTP 2 – Streams & Frames



Streams

• Each stream has a unique ID

– Successive stream IDs must be increasing

– When run out of stream IDs, have to create a new 
connection

• Race condition if both ends try to create stream IDs

– Solution: “client” uses odd numbers, server uses evens

• A stream is created by sending a frame with a new 
stream ID



Frame Types



Simples encoding of an HTTP request

• Send a HEADER frame followed by zero or more 
CONTINUATION frames

– Set END_HEADERS flag on last one

• Send DATA frames for request data, if needed

– Set END_STREAM flag on last

• Response is the same, in reverse



Frame Header

• Length: length of payload
– header is always 9 bytes

• Type: frame type
• Flags: depends on type
• R: reserved;  “must be unset when sending and ignored when receiving”
• Stream ID:  0x0 is reserved for frames associated with the connection 

(not an individual stream)



HEADER frame

• Padding is for security – obfuscate lengths
• Stream dependency – make this stream a child of named stream

• If server can’t make progress on parent, assign resources proportional 
to weights to children

• Header block fragment – take the HTTP 1.1 header and compress it, then 
send it in chunks (if necessary)

• Frame header flags: END_HEADERS and END_STREAM



DATA Frame



PRIORITY Frame

• E: exclusive bit – inserts this stream as only child of parent stream, moving 
existing children to be children of this stream



RST_STREAM Frame

• Ends a stream

– Why is this useful?
• Also have END_STREAM flag bit...



GOAWAY Frame

• Closes connection

• Provides largest id of any stream that the server may 
have acted on
– Why?



PUSH_PROMISE Frame

• Allows server to send something not yet asked for
– E.g., a style sheet or a javascript program or an embedded 

image

• Acts like a HEADERS frame
– Can have CONTINUATIONs following for more header



PING Frame

• Is other end still there?
– Responds with PING with ACK flag bit set

• Measure latency to other end
– PING frames have highest priority...



WINDOW_UPDATE Frame

• TCP does flow control on entire connection

– but need flow control on a per stream basis as well



Getting There From Here

• HTTP 2 is supposed to be an optimized transport of 
HTTP requests

– Needs to be backward compatible with HTTP 1/1.1

• Main problem:

– How to tell if client and server can both speak HTTP 2?
• Client could try HTTP 2 and then revert to 1.1

• Client could start with HTTP 1.1 then upgrade to 2



Dynamically Upgrading to HTTP 2

• Client:

GET / HTTP/1.1

Host: server.example.com

Connection: Upgrade, HTTP2-Settings

Upgrade: h2c

HTTP2-Settings: <base64url encoding of HTTP/2 

SETTINGS payload>



Server Refuses Upgrade

• Server may simply not recognize the upgrade request 
if it isn’t HTTP 2 capable

HTTP/1.1 200 OK

Content-Length: 243

Content-Type: text/html

...



Server Wants to Upgrade

HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: h2c

[ HTTP/2 connection ...



HTTP 2 Wrap-up



Web Caching

• Users often revisit web pages
– Big win from reusing local copy!
– This is caching

• Key question:
– When is it OK to reuse local copy?
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NetworkCache

Local copies

Server



Web Caching (2)

• Locally determine copy is still valid
– Based on expiry information such as “Expires” 

header from server
– Or use a heuristic to guess (cacheable, freshly 

valid, not modified recently) 
– Content is then available right away
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NetworkCache
Server



Web Caching (3)

• Revalidate copy with remote server
– Based on timestamp of copy such as “Last-Modified” 

header from server
– Or based on content of copy such as “Etag” server header
– Content is available after 1 RTT
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NetworkCache
Server



Web Caching (4)

• Putting the pieces together:
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Web Proxies

• Place intermediary between pool of clients and 
external web servers

– Benefits for clients include caching and security checking

– Organizational access policies too!

• Proxy caching

– Clients benefit from larger, shared cache

– Benefits limited by secure / dynamic content, as well as 
“long tail”
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Web Proxies

• Clients contact proxy; proxy contacts server

CSE 461 University of Washington 54

Cache

Near client

Far from client



Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and grew. 
This:

1. Concentrated load on popular servers

2. Led to congested networks and need   to provision more 
bandwidth

3. Gave a poor user experience

• Idea:
– Place popular content near clients

– Helps with all three issues above
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Before CDNs

• Sending content from the source to 4 users 
takes 4 x 3 = 12 “network hops” in the 
example
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. . .



After CDNs

• Sending content via replicas takes only 4 + 2 = 
6 “network hops”
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Server

User

User

. . .

Replica



After CDNs

• Benefits assuming popular content:
– Reduces server, network load
– Improves user experience (PLT)
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Popularity of Content

• Zipf’s Law: few popular items, many 
unpopular ones; both matter

Zipf popularity
(kth item is ~1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)



How to place content near clients? 

• Use browser and proxy caches
– Helps, but limited to one client or clients in one 

organization

• Want to place replicas across the Internet for 
use by all nearby clients
– Done by clever use of DNS
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Content Delivery Network
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Content Delivery Network (2)

• DNS gives different answers to clients
– Tell each client the nearest replica (map client IP)
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Business Model

• Clever model pioneered by Akamai
– Placing site replica at an ISP is win-win
– Improves site experience and reduces ISP bandwidth 

usage
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