
CSE 461:
Computer Networks

John Zahorjan– zahorjan@cs

Justin Chan– jucha@cs

Rajalakshmi Nandkumar – rajaln@cs

CJ Park– cjparkuw@cs

Course Staff

Grading

• Assignments/Projects/Homeworks: 55%

• Midterm: 15%

• Final: 30%

Reading Material:

• Computer Networking: A Top-Down Approach
Kurose, Ross
6th Edition (7th Edition, 5th Edition, …)

• Other networking books would be fine as well

• There is a lot of information available online
(but it’s much harder to read a paragraph here and there than a book)

Administration

• Office hours
• Opportunity to have more persona interactions with both me and the TAs.

• Course Resources
• Mailing list: one-way communication

• Dropbox: Homework

• GoPost Forum: Back and forth discussions on class content

• Gradebook: Grades will be posted here

• Slides
• Customized, department-communal slides

Late Policy

• There is a policy on the course web

• We understand there can be unusual circumstances…

Sections

• Start tomorrow

CSE 461: Computer Networks

Our Goals

• We’ll spend most of our time studying our the Internet is built

• The Internet consists of hardware and software
• NIC, switches, routers, hosts, WiFi, Ethernet, …

• DNS, TCP, IP, BGP, etc.

• The Internet is an implementation of a (many) distributed
algorithm(s)
• So are distributed applications

Our Goals (cont.)

• The Internet must confront a number of problems inherent in
distributed systems
• The major complication is that each agent can observe only its own state

• It must infer the state of other agents based on what it knows about how
they act
• What protocol they run

• The possibility of errors adds a significant level of difficulty

Today

• We start with a sweeping overview of the Internet

• To keep it at an appropriate level, I simplify most
everything
• The actual Internet is more flexible/general than what I show,

but…

• The key ideas shown here are the key ideas

• The survey is “bottom up”

• The course material is “top down”

Basic Concepts and Terminology - Link

011010001110100000110100

Destination
demodulates

Source
modulates

Link
carries modulated signal

Basic Concepts and Terminology -
Performance

011010001110100000110100

Bandwidth
(bits per sec)

Latency
(milliseconds)

Basic Concepts and Terminology - Framing

0110 1000 1110

PreambleFrame

0111

• Frames provide boundaries so the receiver can know when the source has something to say and when not.
• Frames boundaries are useful when there are errors. A frame is corrupt, but not the entire data stream

Basic Concepts and Terminology - Header
0110 1000 1110

0111

0110 00 1000 01 1110 10

• The frame header contains information the sender wants to transmit
to the receiver that is not part of the data stream

• In this example, we’re transmitting sequence numbers
• Why?

• Headers are communication between the sending and receiving protocol
implementations

• Data is communication between sending and receiving protocol clients (apps)

Basic Concepts and Terminology- LAN

• A local area network (often just called “a network”)
is an ensemble of nodes who can hear each other’s
transmissions
• When red transmits, orange, yellow and green all hear

the bits
• Now need more information in the header

• Source address (name)
• Destination address
• (This description corresponds to MAC addresses)

• Note that the addresses are just unique names
• I know my name is 183449338302233928288.
• When I see a frame addressed to that name, I act on it.
• If I see a frame addressed to any other name, I ignore it.

• This works because every transmission is sent to every destination

Basic Concepts and Terminology- Router

• Routers sit on two or more networks
• Each LAN can achieve host to host delivery within the LAN as always
• The router notices when a “packet” sent in the solid network is destined for the hash network

• It copies the packet onto the other network
• It doesn’t copy packets that don’t traverse networks

Basic Concepts and Terminology- Internet

Basic Concepts and Terminology- Routing

source

destination

Basic Concepts and Terminology- IP Address

• MAC addresses are just UIDs
• No useful structure

• To route efficiently, we need
addresses that have some locality

• That’s what IP addresses are for

• IP addresses name network
interface cards (roughly, hosts)

• The IP address space is global
(mostly)

• Addresses that are “similar to”
each other are located in the same
LAN

• The lower left LAN has a “gateway”

Source
128.208.1.137 Destination

31.13.76.68

Basic Concepts and Terminology- IP Address

Apps OS

Network Interface
Card (NIC)

Internet

IP address

The actual
destinations

• An Internet packet contains a destination IP address
• How can the Internet support the source application naming

the destination application?
• “Application” is defined by the OS, and there are many

• Answer: The Internet is agnostic. It carries an uninterpreted
ID (an integer), called a port

• The scope of the port name is the host (IP address)

Basic Concepts and Terminology- Berkeley
Sockets

Apps OS

Network Interface
Card (NIC)

• Application creates a socket, which is an
OS managed resource
• Nothing to do with the Internet…s

• Application binds the socket to a port (a
small integer in a restricted range)

• Incoming Internet packets give both the
IP address of this node and a port
number as the destination

• The OS looks for a socket bound to the
port

• If there is one, it puts the packet into the
receive buffer of that socket

• When the application does a read from
the socket, it fetches packets from the
socket’s input buffer

8

9

Basic Concepts and Terminology- Transport
Protocol

Apps OS AppsOSInternet

• A transport protocol carries uninterpreted bytes from a source application to a destination application
• Internet transport protocols are “end-to-end” – their implementations are in the ends hosts, not the

hardware of Internet itself

Basic Concepts and Terminology- UDP

• UDP is connectionless
• UDP is lossy
• UDP is packet-based

• Provides app message framing
• So long as msg isn’t too big

App Data UDP header

UDP packet

Basic Concepts and Terminology- TCP

• TCP is connection based
• TCP is reliable
• TCP is stream-based

• Reading from a stream is similar to reading from a file

48CF29006C6E027F3C2838299919187F0

Internet Reference Model - Layering

• The classic OSI model has seven layers

• In practice, there are more like four

Application

Transport

Network

Link

UDP, TCP

IP

Ethernet, WiFi

HTTP, SMTP, P0P (project 0)

Basic Concepts and Terminology-Protocol

• A protocol is a set of rules governing how information is
exchanged
• It includes how information is encoded

• It includes the definition of valid message exchange sequences

• The other end of a communication is presumed to be
following the protocol
• That allows each node to infer some information about the state

of the other party/parties

Unrealistically Simple Example Protocol - USEP
• This protocol moves data from A to B, unreliably

• Sender:
• Sends successive messages containing successive data
• Each message contains a header
• The header contains a sequence number – 0, 1, 2, ….

• Receiver:
• Initializes a next expected sequence number variable to 0
• When message arrives compares its seqno to next expected

• seqno < next expected: ignore message
• seqno == next expected: accept message; increment next expected

• seqno > next expected: detect message loss(es); accept message; next expected = seqno + 1

USEP Questions
• Is the situation seqno < next expected possible?

• Is it possible to see the same seqno more than once?

• Why doesn’t the receiver just allocate a huge buffer and fill it with message
contents as they arrive?
• That is, allow messages to arrive in order 0, 3, 7, 4, 2, 1, 6, 5, for instance

• How does the receiver know when it has all the data?

• How does the receiver know when there’s a new sender wanting to start a
new transfer?

• What does sender end up knowing about what data actually arrived?

Example Application Protocol – P0P

• Client-server protocol
• When client wants to start, it contacts the server

• Objective: simple, unreliable, data transfer

• Message format:

• Commands are: HELLO, DATA, ALIVE, and GOODBYE

magic version command seqno session id data payload

16 bits 8 bits 8 bits 32 bits 32 bits variable

P0P Protocol Sequence Diagram
Client Server

HELLO

HELLO

DATA

ALIVE

...

GOODBYE

GOODBYE

• HELLO exchange sets up a new “session”
• Client picks a UID for the session

• How?

• Client sends successive data payloads
• ALIVE responses reassure client

• GOODBYE exchanges allows clean shutdown’

• What happens if a message is lost?

Lost Message - Timeouts

• It is possible for the sender to know that a message was received
• The sender receives a message that would have been sent only if its

message was received (assuming the other end is following the protocol)
• Example: If the client sends an HELLO, it knows it was received when it gets back

an HELLO

• It isn’t possible to know that a message wasn’t received
• Why can’t receiver send a message saying “I didn’t get it”?

• A common approach to guessing when a message is lost is a
timeout
• Send, wait for reply, if it doesn’t come “after a while,” act as though it

was lost

P0P State Diagrams

Server
(per-session state)

Client

