NAT (Network Address Translation)
Jokes

- Seal
- Ghostbusters
- Bittorrent
Grew up in Lexington, KY
Enjoy stargazing, cycling, and mushroom hunting
Met Mario once (long time ago)
Introduction to NAT

Network Address Translation

- Not very old (heavy use since late 90s)
- Maps from private addresses to public addresses, and vice-versa
- Port numbers as secondary addressing information
- Most common type of NAT is actually NAPT (Network Address Port Translation)
- Other type of NAT is “Basic NAT” (which we won’t really be discussing)
Any IP network that isn’t directly connected to the internet
IP addresses can be assigned however we want!
However, generally these ranges are used:
- 10.0.0.0 – 10.255.255.255
- 172.16.0.0 – 172.31.255.255
- 192.168.0.0 – 192.168.255.255
How’s NAT work?

- How could we do this?
How’s NAT work?

- Each NAT device (router) has an address translation table
- For outbound packets, a new table entry is made, choosing an arbitrary source port number (TCP/IP headers rewritten)
- For inbound packets, the table is consulted to rewrite the packet headers and re-route to an internal host
- Phone analogy
Why Do We Need NAT?

- Why is NAT necessary?
Why is NAT necessary?
- Not enough IP addresses to go around
- We want some hosts not to be publicly accessible
- Security concerns (NATs are used as firewalls)
Types of NAT

- **Full-cone NAT**
 - Accepts data through any previously used port

- **Address-restricted-cone NAT**
 - Only accepts data through previously used ports if the source IP matches a system we’ve already sent to

- **Port-restricted-cone NAT**
 - Like the above, but uses source ports too

- **Symmetric NAT**
 - Mappings are unique to external hosts: a different public port is used for each external host
Problems with NAT

- NAT is great!
- But it has issues
- Like what?
Problems with NAT

- NAT is great!
- But it has issues
- Like what?
 - Breaks “end-to-end principle”
 - Should just use IPv6
 - Rewrites packet headers
 - Even requires new TCP checksum!
 - Initial issue: how do you connect to a host behind a NAT if it hasn’t talked to you first?
You’re behind a NAT, and you need an external host’s packets to get to you
Example: running a web host behind a NAT
You can’t necessarily send an outbound packet first to write the NAT table
Major issue for games and P2P
Solutions?
• Port forwarding (manually adding tables to the address translation table)
Two hosts behind NATs need a way to exchange data directly. They know each other’s IPs, but not each other’s communication ports. They both connect to a known server that exchanges the data for them. They can now communicate. Often used for multiplayer games.
UPnP and IGD

- **UPnP: Universal Plug and Play**
 - Protocols for networked devices to perform discovery automatically

- **IGD: Internet Gateway Device protocol**
 - NAT protocol that can perform automatic port mapping
 - Allows a host inside a network to tell the router which public port it wants to use for communication
 - Also gives mechanisms for finding public IP address and checking existing port mappings
 - Games can rely on this protocol to configure NAT tables such that users can be mapped with known ports and communication can take place
Old Name: Simple Traversal of UDP through NAT
New Name: Session Traversal Utilities for NAT
Protocol for NAT traversal
Hosts get their own public-facing IPs by asking an outside server
Traversal Using Relays Around NAT
Similar to earlier punchthrough algorithm
A server sits between two hosts behind NATs
The server relays data between the two hosts
ICE

- Interactive Connectivity Establishment
- Protocol that utilizes STUN and TURN to perform NAT punchthrough
- Used often in VoIP