
CSE 461
MIDTERM REVIEW

NETWORK LAYERS & ENCAPSULATION

Application Application

Transport Transport

Network

Data Link/
Physical

Network

Data Link/
Physical

APPLICATION LAYER

Application Application

• Used by applications

• Protocol is arbitrary

TRANSPORT LAYER

Transport Transport

• Involves packaging of data for transport

• UDP/TCP and ports

NETWORK LAYERS & ENCAPSULATION

Network Network

• Handles issues related to routing on the network

• Data treated as packets

DATA LINK/PHYSICAL LAYERS

Data Link/
Physical

Data Link/
Physical

• Data link layer

• Puts data onto the actual line

• Error-correcting codes to account for line noise are in the data link layer

• At this level, data consists of frames

• Physical layer

• Actual electrical or wireless oscillations

ADDRESSING

• MAC addresses

• IP addresses

• Ports

• Sockets (file descriptors)

MAC ADDRESSES

• 48-bit

• Identify instance of specific network interface hardware

IP ADDRESSES

• 32-bit (in IPv4) or 128-bit (in IPv6)

• Identify a host on a network

• Can change dynamically

PORTS

• 16-bit

• Identify communication channels on a specific host

• Often map to applications

SOCKETS

• Programming interface for networking

• Most common implementation is Berkeley sockets

• Allows data to be sent with file descriptor-like structures

UDP VS. TCP

UDP TCP

Unreliable Reliable

Connection-less Connection-oriented

No acknowledgements Acknowledgements

No flow control Sliding window

No sequence numbers Sequence numbers

TELNET VS. FTP

Telnet FTP

Used for sending text data; originally for
remote login into a server

Used for sending files

Data transfer and control on same channel Separate channels for control and data
transfer; control channel uses Telnet

Uses TCP Also uses TCP

Once connected, server and client
essentially the same

Server and client behave very differently

Not secure; largely replaced by SSH Not secure; somewhat replaced by SFTP

METRICS

• Bandwidth

• Latency

• Throughput, goodput

• Channel utilization

• Shannon’s theorem

• Nyquist rate

FREQUENCY & BANDWIDTH

• Frequency: rate of an oscillation

• Bandwidth: measures the width of a range of frequencies

• Bandwidth = freq
upper

 - freq
lower

• Human hearing bandwidth: ~20kHz (20kHz - 20 Hz)

• “Bandwidth” and “bitrate” are often used interchangeably; this is a different definition

• Bonus Question: what’s the frequency range and bandwidth of 802.11 b/g?

• 2.4 GHz to 2.5 GHz; 100 MHz

LATENCY

• Time between source and destination

• Shortest possible latency bounded by c

• Ping can measure round-trip latency

THROUGHPUT & GOODPUT

• Throughput: measures how much data can be sent in a given time period (a.k.a. bitrate)

• E.g., 100 Gbps

• Bits that you can send (i.e., put onto the wire) per amount of time

• Goodput: excludes protocol bits and retransmitted data packets

• What factors might cause goodput < throughput?

• Protocol overhead

• Dropped or corrupted packets

• Flow control

CHANNEL UTILIZATION

• Calculates how much of the channel is being used

• Percent of the time the channel is in use

• (sent data size) / ((channel bitrate) * (round-trip latency))

SHANNON THEOREM

• Tells about maximum bitrate in the presence of noise

• Capacity = bandwidth * log
2
(1 + signal/noise)

• C = B log
2
(1 + S/N)

• What are the implications of this?

NYQUIST RATE

• To recover a waveform, the sampling rate must be at least two times the
highest frequency

• Telephone sampling rate is 8kHz; what are the implications of this?

• What sampling rate would be required to recover all frequencies audible by
humans? (Up to 20kHZ)

• Audio CDs use 44.1kHz sampling rates for this reason

HTTP

• HTTP 1.0

• Initial connection over TCP acts as a preamble

• Content-length can designate payload end

• Bad for streaming

• Put the content-length in the end of the payload → hard to cache on the receiver side

• Caching used heavily

• HTTP 1.1

• Data comes as a stream, chunked into defined lengths (tokenized)

• Connections are reused, reducing overhead

• Some pipelining possible, but limited

• HTTP 2.0

• Reduces latency through header compression

• Allows asynchronous sending/multiplexing over a single TCP connection

• Fixed the head-of-line blocking problem in HTTP 1.x

ERROR HANDLING / Integrity

• Parity bits

• Checksums

• CRCs

PARITY BITS

• Bits check parity on a set of bits

• Even parity: bits add to 0

• Odd parity: bits add to 1

• Multiple parity bits (on odd bits/ on even bits, etc.)
can increase effectiveness

CHECKSUMS & CRCS

• Checksums:

• Adds all words in data as unsigned numbers, allowing to overflow

• Sum was then compared to check data integrity

• CRCS:

• Specific type of checksum that uses polynomial division

• Both are integrity checks using a fixed size of data

OTHER TOPICS

• DNS

• Find the IP address for a URL

• UDP is typically used when packet size is smaller than 512 bytes

• Typosquatting: register a wrong address for phishing www.yaho.com

• Denial of service: overloading DNS servers → unable to resolve URLs

• Registrar hacking: company’s name servers that supply IP info are hacked → traffic redirected

• DNS hijacking: DNS servers maliciously return incorrect translations

• DNS cache poisoning: caches are supposed to expire. Altering the cache data returns incorrect translations

http://www.yaho.com

ADDITIONAL STUDY SUGGESTIONS

• Read through your project 0 & 1 code and diagram what it’s doing

• Review HW problems; do similar problems

• Watch David Wetherall’s Coursera course videos (link)

• Review old midterms

• Available on CSE site (but cover somewhat different material than what ours will)

https://class.coursera.org/comnetworks-003

ANY QUESTIONS?

