CSE 461
INTEGRITY CHECKING, HASHING, AND DIGITAL SIGNATURES
JOKE: HTTP
INTEGRITY

- Want to send a file to another party
- Want to make sure the file that arrives is the same data that was sent
- What are some ways we might design a system like this?
 - Send duplicate copies of each bit
 - Send duplicate copies of the entire file
 - Check the results of mathematical functions based on the data
PARITY BITS

• Bits check parity on a set of bits
• Even parity: bits add to 0
• Odd parity: bits add to 1
• Multiple parity bits (on odd bits/ on even bits, etc.) can increase effectiveness
• **Bonus Question**: What parity bit would need to go in the x to achieve even parity? 0010101x
 • 1
CHECKSUMS & CRCs

- Checksums:
 - Adds all words in data as unsigned numbers, allowing to overflow
 - Sum is then compared to check data integrity
 - Many variations
 - One common usage of hashing algorithms

- CRCS:
 - Specific type of checksum that uses polynomial division
 - Both are integrity checks using a fixed size of data
 - Checksum demo (cksum, md5sum)
HASHES

- Equivalent to checksums, but more general
- Functions to change a large amount of data into a small amount of data
- Example: (whalers.txt)
 We're whalers on the moon,
 We carry a harpoon.
 But there ain't no whales,
 So we tell tall-tales,
 And sing our whaling tune.

a32c31bf9c190db7f2197de4479f6864
HASHES: USES

• Checking if a file has been modified (checksum)
• Storing data efficiently in tables (hash tables)
• Detecting duplicate files
• Shortening data
• Proving that you know data without that data needing to be stored
 • Passwords
HASHES AND PASSWORDS

- Linux /etc/passwd and /etc/shadow files
- passwd/shadow file demo
- How can we find passwords, if we have a shadow file?
 - Brute force
 - Reverse the hash
 - Cryptographic hashes
 - Rainbow tables
- Brute force password cracking demo
How can we protect against traditional password attacks? (Assume we’re using a cryptographic hash.)

- Use a deliberately slower hashing algorithm (e.g., Blowfish)
- Use more secure passwords
- “Salt” our hashes with extra data
- Repeated hashing
PRIVATE/PUBLIC KEYS AND ENCRYPTION

• Symmetric-key encryption
• Private/public key pairs
• Digital signatures
ANY QUESTIONS?