Domain Name System (DNS)

CSE 461 Section

Addressing So Far

Port numbers for applications
MAC addresses for hardware
IP addresses for a way to send data in a smart, routable way

Problems with MACs/IPs/Ports

Humans are bad at remembering strings of numbers
We need a human-friendly naming system!

I HAVE NO IDEA WHAT I'M DOING

Requirements for Human-Readable Naming System

• What do we need? As short as possible Easy to memorize (i.e., not arbitrary) Unique Customizable Hierarchical Reflect organizational structure A way to quickly translate to and from the existing, computer-friendly addressing systems Ideally, we'd like to address specific resources as well

Domain Names

 Human-readable "domain names" map to IP addresses (names < 254 characters)

 A human can type www.google.com into their browser, and the browser will (somehow) know to go to 173.194.33.179

But how might this be done?
Some sort of hash (not really practical)
A file of all of the mappings
Separate servers to provide the mappings

Hierarchical DNS Servers

- Systems keep a small cache of mappings they know
- When a domain name is used that isn't in the cache, the system queries a name server
- Simple UDP communication on port 53
- Database is distributed
- Hierarchical namespace: it's name servers all the way down

DNS Protocol

• Series of Question/Response messages

DNS Message Format

DNS header (fixed length)

Question entries (variable length)

Answer resource records (variable length)

Authority resource records (variable length)

Additional resource records(variable length)

DNS Protocol – Question Entries

• Questions contain 3 fields:

Question Name Question Type Question Class • Name: What resource we are querying for: 0x6qoogle0x3com0x0 • Type: Can specify what we are trying to resolve for: mail, IPv4, ns... • Class: Usually set to internet class, capable of being others

DNS Protocol – Answer Resource Records

• Resource Record:

Name Type Class TTL Data Length Data

- Name/Type/Class same as before
- Time-To-Live:
 - Lease time this record will be valid to cache for
- Data:
 - Whatever the Type specifies for the data

Domain Hierarchy

Resolving a Domain Name

• If I type sports.huskies.com, what happens?

- Check /etc/hosts
- Check DNS cache
- Check local DNS server
- Go down hierarchy and ask:
 - Ask . DNS root server
 - Ask .com TLD (Top Level
 - Domain) server
 - Ask huskies.com's NS
 - Send HTTP request to the IP address obtained

Local DNS Server

 "A local DNS server does not strictly belong to the hierarchy of servers but is nevertheless central to the DNS architecture. Each ISP—such as a university, an academic department, an employee's company, or a residential ISP—has a local DNS server (also called a default name server)."

Multiple IP Addresses and Aliasing

- DNS servers can return different IP address results for the same domain name
- Why is this useful?
- Also, multiple domain names can map to one IP address
- Why is this useful?

Attacks and Other Fun

What are some ways this system can break? DoS attacks on DNS server

- Done before, in 2002 and 2007
- Not much impact due to filtering and caching
- Return incorrect IP address to a DNS request
- Could even return the IP of our own server!
- Commonly done by ISPs
 Compromise root servers

DNS Usages – Load Balancing

- Take advantage of multiple IP aliasing to round robin deliver services different IP addresses
- Linux queries IP of first record returned from DNS
- IP address returned does not guarantee that host is available