
CSE 461
INTEGRITY CHECKING AND HASHING

JOKE: TELNET

INTEGRITY

• Want send a file to another party

• Want to make sure the file that arrives is the
same data that was sent

• What are some ways we might design a system like this?

• Send duplicate copies of each bit

• Send duplicate copies of the entire file

• Check the results of mathematical functions based on the data

PARITY BITS

• Bits check parity on a set of bits

• Even parity: bits add to 0

• Odd parity: bits add to 1

• Multiple parity bits (on odd bits/ on even bits, etc.)
can increase effectiveness

• Bonus Question : What parity bit would need to go in the x
to achieve even parity? 0010101x

• 1

CHECKSUMS & CRCS

• Checksums:

• Adds all words in data as unsigned numbers, allowing
to overflow

• Sum is then compared to check data integrity

• Many variations

• One common usage of hashing algorithms

• CRCS:

• Specific type of checksum that uses polynomial division

• Both are integrity checks using a fixed size of data

• Checksum demo (cksum, md5sum)

HASHES

We're whalers on the moon,

We carry a harpoon.

But there ain't no whales,

So we tell tall-tales,

And sing our whaling tune.

• Equivalent to checksums, but more general

• Functions to change a large amount of data into a small
amount of data

• Example:
(whalers.txt)

9bc0135a4cf194424c60dbc9faedcaf3

HASHES: USES

• Checking if a file has been modified (checksum)

• Storing data efficiently in tables (hash tables)

• Detecting duplicate files

• Shortening data

• Proving that you know data without that data needing to be
stored

• Passwords

HASHES AND PASSWORDS

• Linux /etc/passwd and /etc/shadow files

• passwd/shadow file demo

• How can we find passwords, if we have a shadow file?

• Brute force

• Reverse the hash

• Cryptographic hashes

• Rainbow tables

• Brute force password cracking demo

PROTECTING
AGAINST ATTACKS

• How can we protect against traditional password
 attacks? (Assume we’re using a cryptographic hash.)

• Use a deliberately slower hashing algorithm (e.g., Blowfish)

• Use more secure passwords

• “Salt” our hashes with extra data

• Repeated hashing

ANY QUESTIONS?

