Shakin’ Hands and Li| h
In SYN A TCP Tale

CSE 461 Sectio

Joke Later!

* Let's learn things first!

TCP Is Reliable

* What do we mean by “reliable?”

. - N
We know when the other party receives or doesn’t receive \

certain data

Data arrives intact |
Data arrives in the correct order (to the applica

least)
\" J
D— % ;\\ ‘/ -

& N

Where This Reliability Comes From

* What's the main mechanism for ensuring this \
reliability?

* Sequence numbers!

- They allow packets to be identified, acknowledge
implicitly re-requested |

* ForTCP to work, clients must know each other’
number schemes

Starting Communication:
The Three-Way Handshake

Need to synchronize with each
other’s sequence numbers

How can we do this?

Active open vs. passive open
connect() vs. listen()

SYN packet
Send own sequence number A

SYN/ACK packet
Acknowledge with A+1, send own sequence number B

ACK packet
Acknowledge with B+1

Demonstration

Three-Way Handshake Diagram

Initiator Listener

connect() listen()
SYN

TCB initialized to

SYN-ACK SYN-RECEIVED state
Success code
returned by

connect()

TCB transitions to
ESTABLISHED state

(Data packets exchanged)

Ending Communications

* We need a protocol for stopping communications

 What could we do?

* Let's send packets to close
the connection!

* FIN/ACK sequence

-

X

CONNECTISYN (Step 1 of the 3-way-handshake)

. e e UNUSUA event
. ChENU ECENVES path (Start) _ B daiaialets

LISTEN/- L

— SOTVETISENCOr path CLOSE/N :

CLOSE/-

(Step 2 of the 3-way-handshake) SYN/SYN+ACK

LISTEN
A

ST/- i : SENDISYN
SYN

RECEIVED SOOI)., kL o SN

Data exchange occurs
» | ESTABLISHED -

SYN+ACK/ACK

(Step 3 or the 3-way-handshake)

CLOSEIFIN
CLOSE/FIN FINJACK

p

Y FINJACK Y
FIN WAIT 1 ’[CLOSING] [CLOSE WAIT

FINSACK/ACK

CLOSE/IFIN

Y Y
FIN WAIT 2 ;[TIME WAIT | LAST ACK

FINFACK

Timeout ACK/

(Go back to ‘-ll"l)_:

TCP Half-Open

* TCP Half-Open

One client is in the open state; the otheris not | |
* How could this happen? A

One endpoint has crashed /
One endpoint has removed the socket A
One endpoint has received a SYN and

sent a SYN/ACK, but the other side
has not ACKed the SYN/ACK yet X

.
One endpoint has sent a FIN and

received an ACK, but the other side

has not sent a FIN yet

RST packet often sent in these cases - ‘5 -y

SYN Floodin

SYN Flooding Countermeasures

* What ideas can we think of to make it so that SYN
flooding doesn’t work?

Constraint: we don’t want to break TCP!)
Identify SYN flooders and filter their packets
Reduce our timeout until we garbage-collect TCBs
Recycle half-open TCP connections
Use SYN cookies

Sequence number encodes all of the
data that would otherwise be stored

This allows us to garbage-collect our
SYN queue and still respond to
subsequent ACKs

TCP Connection Hijacking

* TCPis not (by default) encrypted

 This means anyone sniffing our packets can see the sequence
numbers being used

* How is this a problem?

For many protocols, the sequence and acknowledgement numbers
are the other “security”

Using these numbers can make a host think that you're
sending the next packet in a communication session

This can cause the communication to be re-addressed
to a new IP address/port

TCP Veto

* InTCP, how does a server know to discard a duplicate
packet? What does it check for?

Correct checksum
Same sequence number

* How are sequence numbers generated?
Randomly at first, then incremented

Often, this increment is unpredictable,
and depends on received data length

How could we secret inject a packet
into communication?

Predict the length and sequence number
of some data in the future

Pre-empt that data with a similar packet

Joke Time

* Two jokes

Questions?

