Introduction to Computer Networks

Application Layer Overview

* Computer Science & Engineering

W UNIVERSITY of WASHINGTON

Where we are in the Course

* We are finally at the Application Layer!

— Builds distributed “network services” (DNS,
Web) on Transport services

Application

Transport

Network
Link
Physical

CSE 461 University of Washington

Topic

* The DNS (Domain Name System)
— Human-readable host names, and more
— Distributed namespace & resolution

(www.uw.edu?] | 128.94.155.135

.| Network —

e

CSE 461 University of Washington

Names and Addresses

* Names are higher-level identifiers for resources

e Addresses are lower-level locators for resources
— Multiple levels, e.g. full name - email - IP address - Ethernet address

* Resolution (or lookup) is mapping a name to an address

Name, e.g.
“Andy Tanenbaum,”
or “flits.cs.vu.nl”

CSE 461 University of Washington

—

W
%

i

Lookup J‘

Directory

Address, e.g.
“Vrijie Universiteit, Amsterdam”
or IPv4 “130.30.27.38”

Before the DNS — HOSTS.TXT

* Directory was a file HOSTS.TXT
regularly retrieved for all hosts from
a central machine at the NIC
(Network Information Center)

 Names were initially flat, became
hierarchical (e.g., lcs.mit.edu) ~85

* Neither manageable nor efficient
as the ARPANET grew ...

CSE 461 University of Washington

DNS

* A naming service to map between host
names and their IP addresses (and more)

— www.uwa.edu.au = 130.95.128.140

* Goals:
— Easy to manage (esp. with multiple parties)
— Efficient (good performance, few resources)

* Approach:

— Distributed directory based on a hierarchical
namespace

— Automated protocol to tie pieces together

DNS Namespace

o 7

* Hierarchical, starting from “.” (dot, typically omitted)

| Generic _ > | Countries >
aero com edu gov museum org net --- au P uk us nl .-
| /\ /\ /\
cisco washington acm ieee edu ac co vu oce
/\ /\ | /\
eng cs eng jack jill uwa keio nec cs law
/\
robot cs csl filts fluit

CSE 461 University of Washington

TLDs (Top-Level Domains)

* Run by ICANN (Internet Corp. for Assigned Names and Numbers)
— Starting in ‘98; naming is financial, political, and international ©

e 22+ generic TLDs
— Initially .com, .edu, .gov., .mil, .org, .net
— Added .aero, .museum, etc. from '01 through .xxx in '11
— Different TLDs have different usage policies

 ~250 country code TLDs
— Two letters, e.g., “.au”, plus international characters since 2010
— Widely commercialized, e.g., .tv (Tuvalu)
— Many domain hacks, e.g., instagr.am (Armenia), goo.gl (Greenland)

CSE 461 University of Washington

DNS Zones

* A zone is a contiguous portion of the namespace

e Generic - | Countries

Y

cisco)| \washington edu
) Z
csl
A zone

’°b°t Delegatlon

CSE 461 University of Washington

DNS Zones (2)

e Zones are the basis for distribution
— EDU Registrar administers .edu
— UW administers washington.edu
— CS&E administers cs.washington.edu

e Each zone has a nameserver to
contact for information about it
— Zone must include contacts for

delegations, e.g., .edu knows
nameserver for washington.edu

CSE 461 University of Washington

10

DNS Resource Records

* A zone is comprised of DNS resource records that give

information for its domain names

Type Meaning
SOA Start of authority, has key zone parameters
A IPv4 address of a host
AAAA (“quad A”) | IPv6 address of a host
CNAME Canonical name for an alias
MX Mail exchanger for the domain
NS Nameserver of domain or delegated subdomain

CSE 461 University of Washington

11

DNS Resource Records

. Authoritative data for cs.vu.nl

cs.vu.nl.
cs.vu.nl.
cs.vu.nl.
cs.vu.nl.

star
zephyr
top
www
ftp

flits
flits
flits
flits
flits

rowboat

little-sister

laserjet

86400
86400
86400
86400

86400
86400
86400
86400
86400

86400
86400
86400
86400
86400

IN
IN
IN
IN

IN
IN
IN
IN
IN

IN
IN
IN
IN
IN

IN
IN
IN
IN

IN

SOA
MX
MX
NS

A
A
A
CNAME
CNAME

A
A
MX
MX
MX

MX

MX

A

A

CSE 461 University of Washington

star boss (9527,7200,7200,241920,86400)
1 zephyr

2 top

star Name server
130.37.56.205

130.37.20.10

130.37.20.11 IP addresses

star.cs.vu.nl
zephyr.cs.vu.nl Of compUterS
130.37.16.112

192.31.231.165

1 flits

2 zephyr

3 top

130.37.56.201

1 rowboat .

2 zephyr Mail gateways
130.37.62.23

192.31.231.216

2

12

DNS Resolution

* DNS protocol lets a host resolve
any host name (domain) to IP
address

* |f unknown, can start with the root
nameserver and work down zones

* Let’s see an example first ...

CSE 461 University of Washington

13

DNS Resolution (2)

* flits.cs.vu.nl resolves robot.cs.washington.edu

E Root name server
(a.root-servers.net)

Edu name server
(a.edu-servers.net
1: query

.

10: robot.cs.washington.edu Local

7: Cs ;
Originator (cs.vu.nl) .Washmgtof).edu @ uw
9 name server <) name server

UWCS
'
% 5 name server

CSE 461 University of Washington

14

Ilterative vs. Recursive Queries

* Recursive query

— Nameserver completes resolution
and returns the final answer

— E.g., flits =2 local nameserver

* [terative query

— Nameserver returns the answer or
who to contact next for the answer

— E.g., local nameserver = all others

CSE 461 University of Washington

15

DNS Resolution

* What are the implications of the
resolution process presented
above?

CSE 461 University of Washington

16

Iterative vs. Recursive Queries (2)

* Recursive query

— Lets server offload client burden
(simple resolver) for manageability

— Lets server cache over a pool of
clients for better performance

* |terative query
— Lets server “file and forget”
— Easy to build high load servers

CSE 461 University of Washington

17

query

Caching

* Resolution latency should be low
— Adds delay to web browsing

* Cache query/responses to answer

future queries immediately
— Including partial (iterative) answers
— Responses carry a TTL for caching

response

Nameserver

CSE 461 University of Washington

18

Caching (2)

* flits.cs.vu.nl now resolves eng.washington.edu
— And previous resolutions cut out most of the process

| know the server for]
washington.edu!

1: query 2: query
> E?Cachéw >
._ < — — < 5

= 4: eng.washington.edu L 3t eng.washington.edu
Local nameserver UW nameserver
(for cs.vu.nl) (for washington.edu)

CSE 461 University of Washington 19

Local Nameservers

* Local nameservers typically run by
IT (enterprise, ISP)
— But may be your host or AP
— Or alternatives e.g., Google public DNS

* Clients need to be able to contact
their local nameservers
— Typically configured via DHCP

CSE 461 University of Washington

20

Root Nameservers

* Root (dot) is served by 13 server names
— a.root-servers.net to m.root-servers.net
— All nameservers need root IP addresses
— Handled via configuration file (named.ca)

* There are >250 distributed server instances

— Highly reachable, reliable service

— Most servers are reached by |P anycast
(Multiple locations advertise same IP! Routes
take client to the closest one.)

— Servers are IPv4 and IPv6 reachable

CSE 461 University of Washington

21

Root Server Deployment

™,

Legend

, Multiple instances

. Snapshot on 27.02.12. Does not represent current deployment.

Imagery ©2013 NASA, TerraMetrics - Terms of Use

CSE 461 University of Washington

22

DNS Protocol

* Query and response messages
— Built on UDP messages, port 53

— ARQ for reliability; server is stateless!
— Messages linked by a 16-bit ID field

Client

Query

Server

ID=0x1234

\>

/ Time
ID=0x1234

CSE 461 University of Washington

Response

23

DNS Protocol (2)

* Service reliability via replicas
— Run multiple nameservers for domain
— Return the list; clients use one answer

— Helps distribute load too

[NS for uw.edu?] Use A,Bor C

e

=

4

CSE 461 University of Washington

24

DNS Issues

* Are there any security issues with DNS?

CSE 461 University of Washington

25

DNS Issues

e Recall that CDNs allow you to replicate content
at multiple locations

e DNS can be used to redirect clients to CDN
nodes based on the resolver IP

* But this can go wrong sometimes...

CSE 461 University of Washington

26

Introduction to Computer Networks

HTTP, the HyperText Transfer
Protocol (§7.3.1-7.3.4)

—I—S Computer Science & Engineering

W UNIVERSITY of WASHINGTON

Web Context

E—— et ¢ o e GERY
Ok UM Yea chpay Gereress (80i e \
T A Y rt—— 5 :

B Vet s o b s g v

Py) le Less Ao

Page as a set of related
HTTP transactions

/youtube.com

HTTP request
< 3

pers W el ooy, = badred gradude magm o ()3 0 be Docrn d pregrass a0 d
TECEROLOGY | o R e e . e ers Rebcd e - | HTTP response Web server
Web www
Web page browser
»

.cs.washington.edu
e
A e gy Gromen [oN g
o < B P - 1 »
» e o e e

R ‘cnivervity of Waskington

ring
f ~ Informetion fer Curren: Stuga iy

google-analytics.com

CSE 461 University of Washington

28

Web Protocol Context

* HTTP is a request/response protocol

for fetching Web resources
— Runs on TCP, typically port 80
— Part of browser/server app

request

HTTP HTTP
TCP response TCP
IP IP

802.11 802.11

CSE 461 University of Washington

Fetching a Web page with HTTP

e Start with the page URL:
http://en.wikipedia.org/wiki/Vegemite

Protocol Server Page on server

* Steps:
— Resolve the server to IP address (DNS)
— Set up TCP connection to the server
— Send HTTP request for the page
— (Await HTTP response for the page)
Execute / fetch other Web resources / render
— Clean up any idle TCP connections

CSE 461 University of Washington

30

Static vs Dynamic Web pages

 Static web page is a file contents, e.g., image

* Dynamic web page is the result of program execution
— Javascript on client, PHP on server, or both

Web Program
page - 3
\\ R — 5 RN E—— —-V
4u <__ S Program

—— Web server &

Web browser

CSE 461 University of Washington

HTTP Protocol

* Originally a simple protocol, with
many options added over time
— Text-based commands, headers

* Try it yourself:
— As a “browser” fetching a URL
— Run “telnet en.wikipedia.org 80”

— Type “GET /wiki/Vegemite HTTP/1.0”
to server followed by a blank line

— Server will return HTTP response with
the page contents (or other info)

CSE 461 University of Washington

33

HTTP Protocol (2)

« Commands used in the request

Method Description
I;eatgclew —> GET Read a Web page
Upload HEAD Read a Web page's header
data _|POST Append to a Web page

PUT Store a Web page
DELETE |Remove the Web page
TRACE Echo the incoming request
CONNECT |Connect through a proxy
OPTIONS |Query options for a page

CSE 461 University of Washington

34

HTTP Protocol (3)

* Codes returned with the response

Code | Meaning Examples
1xx |Information |100 = server agrees to handle client's request
Yes! = 2xx |Success 200 = request succeeded; 204 = no content present
3xx |Redirection 301 = page moved; 304 = cached page still valid
4xx |Client error (403 = forbidden page; 404 = page not found
5xx |Server error |500 = internal server error; 503 = try again later

CSE 461 University of Washington

35

HTTP Protocol (4)

* Many header fields specify capabilities and content
— E.g., Content-Type: text/html, Cookie: lect=8-4-http

Function

Example Headers

Browser capabilities
(client = server)

User-Agent, Accept, Accept-Charset, Accept-Encoding,
Accept-Language

Caching related
(mixed directions)

If-Modified-Since, If-None-Match, Date, Last-Modified,
Expires, Cache-Control, ETag

Browser context
(client = server)

Cookie, Referer, Authorization, Host

Content delivery
(server = client)

Content-Encoding, Content-Length, Content-Type,
Content-Language, Content-Range, Set-Cookie

CSE 461 University of Washington

36

Introduction to Computer Networks

HTTP Performance (§7.3.4,
§7.5.2)

% Computer Science & Engineering
_

W UNIVERSITY of WASHINGTON

PLT (Page Load Time)

* PLT is the key measure of web
performance

— From click until user sees page
— Small increases in PLT decrease sales

* PLT depends on many factors

— Structure of page/content
— HTTP (and TCP!) protocol
— Network RTT and bandwidth

CSE 461 University of Washington

38

Page Load Time

* How can we optimize page
load time?
— Consider all layers of the stack

— Consider different kinds of web
pages and what they contain

CSE 461 University of Washington

39

Early Performance

e HTTP/1.0 used one TCP connection
to fetch one web resource

— Made HTTP very easy to build -
— But gave fairly poor PLT... |

CSE 461 University of Washington

Connection setup

e

HTTP
" Request

— HTTP
Response

40

Early Performance (2)

* Many reasons why PLT is larger than
necessary

— Sequential request/responses, even
when to different servers

— Multiple TCP connection setups to
the same server

— Multiple TCP slow-start phases

* Network is not used effectively
— Worse with many small resources / page

CSE 461 University of Washington

Time

Connection setup

e

HTTP
" Request

— HTTP
Response

41

Parallel Connections

* One simple way to reduce PLT

— Browser runs multiple (8, say) HTTP
instances in parallel

— Server is unchanged; already handled
concurrent requests for many clients

* How does this help?
— Single HTTP wasn’t using network much ...

— So parallel connections aren’t slowed much
— Pulls in completion time of last fetch

CSE 461 University of Washington

43

Persistent Connections

* Parallel connections compete with
each other for network resources

— 1 parallel client = 8 sequential clients?
— Exacerbates network bursts, and loss

* Persistent connection alternative
— Make 1 TCP connection to 1 server
— Use it for multiple HTTP requests

CSE 461 University of Washington

44

Time

Persistent Connections (2)

Connection setup

e

HTTP
" Request

— HTTP
Response

One request per connection

CSE 461 University of Washington

Sequential requests

per connection

Pipelined
requests =]

Pi

pelined requests
per connection

Persistent Connections (3)

* Widely used as part of HTTP/1.1
— Supports optional pipelining

— PLT benefits depending on page
structure, but easy on network

* |ssues with persistent connections

— How long to keep TCP connection?
— Can it be slower? (Yes. But why?)

CSE 461 University of Washington

46

Web Caching

* Users often revisit web pages
— Big win from reusing local copy!
— This is caching

o Local copies
: Network —5
Server

* Key question:
— When is it OK to reuse local copy?

CSE 461 University of Washington

47

Web Caching (2)

* Locally determine copy is still valid
— Based on expiry information such as
“Expires” header from server
— Or use a heuristic to guess (cacheable,
freshly valid, not modified recently)
— Content is then available right away

Server

CSE 461 University of Washington

48

Web Caching (3)

* Revalidate copy with server
— Based on timestamp of copy such as
“Last-Modified” header from server
— Or based on content of copy such as
“Etag” header from server
— Content is available after 1 RTT

[\etwork

CSE 461 University of Washington

49

Web Caching (4)

e Putting the pieces together:

1: Request 2: Check expiry

[
—

3: Conditional GET

Y

4a: Not modified

Y

Program

A

A

‘ Cache

Web browser

CSE 461 University of Washington

4b: Response

Web server

50

Web Proxies

* Place intermediary between pool of
clients and external web servers

— Benefits for clients include greater
caching and security checking

— Organizational access policies too!

* Proxy caching

— Clients benefit from a larger, shared
cache

— Benefits limited by secure and dynamic
content, as well as “long tail”

CSE 461 University of Washington

51

Web Proxies (2)

* Clients contact proxy; proxy contacts server

— Browser cache

— = -— | —

—_ — =| Cache —
Proxy cache \E

- Near client Servers
= ,
Clients Far from client

CSE 461 University of Washington

52

Introduction to Computer Networks

CDNs (Content Delivery
Networks) (§7.5.3)

—I—S Computer Science & Engineering

W UNIVERSITY of WASHINGTON

Context

* As the web took off in the 90s, traffic
volumes grew and grew. This:

1. Concentrated load on popular servers

2. Led to congested networks and need
to provision more bandwidth

3. Gave a poor user experience

* |dea:
— Place popular content near clients
— Helps with all three issues above

CSE 461 University of Washington

55

Questions

* What are good locations to establish
CDN nodes?

CSE 461 University of Washington

56

Before CDNs

* Sending content from the source to
4 users takes 4 x 3 =12 “network

hops” in the example

—_— —

Source \5 User

CSE 461 University of Washington

After CDNs

* Sending content via replicas takes
only 4 + 2 = 6 “network hops”

P

7=
oy —s =

Source \5 User

CSE 461 University of Washington

58

Popularity of Content

e Zipf's Law: few popular items, George Zipf (1902-1950)
many unpopular ones; both matter

A
1

Zipf popularity
(kth item is 1/k)

Relative Frequency

Source: Wikipedia

CSE 461 University of Washington 60

How to place content near clients?

* Use browser and proxy caches

— Helps, but limited to one client or
clients in one organization

* Want to place replicas across the
Internet for use by all nearby
clients

— Done by clever use of DNS

CSE 461 University of Washington

61

Content Delivery Network

CDN origin 5
Server iy Distribution to

~
~
~
-~
~

~
~
-~
-~

-~
-~
~

Amsterdam [—

CSE 461 University of Washington

Content Delivery Network (2)

* DNS resolution of site gives different answers to clients

— Tell each client the site is the nearest replica (map client IP)

Sydney
CDN node

1: Distribute content
<— ____________

4: Fetch
page

CDN origin
server

CDN DNS

2: Query DNS

[or——
I

Sydney clients

CSE 461 University of Washington

Amsterdam
CDN node

= - &5

|

:

“Contact Sydney”

server
==/ -| &L
“Contact Amsterdam”

Amsterdam clients

63

()

Consumer

CSE 461 University of Washington

Business Model

* Clever model pioneered by Akamai
— Placing site replica at an ISP is win-win

— Improves site experience and reduces
bandwidth usage of ISP

ISP

_—

>

_

= User
> =
==

Replica™]

Do — :f User

64

Topic

* The Future of HTTP
— How will we make the web faster?
— A brief look at some approaches

’ request
. Network

CSE 461 University of Washington 65

Modern Web Pages

* Waterfall diagram shows progression of page load

http://coursera.org

i. coursera.org - /

2. ocsp.godaddy.com - /
B 3. www.coursera.org - /
4. ocsp.digicert.con - /
5. ocsp.digicert.con - /

B 6. dtSzaw6ad8blc....ont.net - wwmw.css
B 7. dtSzaw6ad8blc..... net - require.js
B 8. dtSzawbadsblc....ont.net - home.js
B 9. dtSzaw6ad8blc....net - loading.gif
10, wuw.coursera.org - favicon.ico

B11. dtSzaw6a98blc....t.net - banner.js

0.2

0.4 0.6 0.8 1.0

I 274 ns 202>

I 172 v
N o5

1.2 1.4 1.6

B 127 ns

§ 30 ms

Il 255 ns

ms

171 me

1.8

269 ms

2.0 2.2

B 144 ns
L 34 ms

Il ONS Lockup | M Initisl Connection

I SSL Negotiation

B Time to First Byte | lll Content Downl

oad || Start Render

| Document Complete

2xx result -

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

CSE 461 University of Washington

66

Modern Web Pages (2)

hitp://cowserasong 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4
1. coursera.org - / 274 ms (302)
2. ocsp.godaddy.com - / B 172 ns
B 3. waw.coursera.org - / B 5 ns
. | 4. ocsp.digicert.con - / B 127 ns
Yl kes : 5. ocsp.digicert.con - / 30 ms
B 6. dtSzawsad8blc....ont.net - wew.css [ll 295 ns
B 7. dtSzawbad8blc..... net - require.js 59 ms
_23 req u ests A 8. dtSzaw6ad8blc....ont.net - home.js 269 ns
B 9. dtSzaw6a9sblc....net - loading.gif 171 ms

10, wuw.coursera.org - favicon.ico
BA11. dtSzawba98blc....t.net - banner.js
- 1 M b d ata @12. dtSzawbadtblc. ... iaproregular .uoff
A13. dtSzaw6ad8blc....9_new-courses.png
B14. dtSzaw6a98blc....018_ace-intro.png
- 15, www.coursera.org - list2
2'6 SeCS A16. dtSzawbad8blc....t - quotemark.png
A17. dtSzaw6ad8blc..... net - sprite.png

18, www.coursera.org - signup_stats
19, dtSzawsa98blc....015_listmaker.jpg

B 20. dtSzawsad8blc....017_crunchies. jpg 545 ms [

B21. dtSzaw6agsblc....Ffiapromedium.uoff 483 s

BA22. dtSzaw6ad8blc....ra_logo_small.png B 298 ns

B23. eventing.coursera.org - 204.min.js 600 ns [N A
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.8

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

CSE 461 University of Washington 67

Modern Web Pages (3)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.5

CPU Utilization

BandwidthIn (0 = 5,000 Kbhps)

Yay! (Network used well)

* Waterfall and PLT depends on many factors
— Very different for different browsers
— Very different for repeat page views
— Depends on local computation as well as network

CSE 461 University of Washington 68

Recent work to reduce PLT

Pages grow ever more complex!
— Larger, more dynamic, and secure
— How will we reduce PLT?

1. Better use of the network
— HTTP/2 effort based on SPDY

2. Better content structures
— mod_pagespeed server extension

CSE 461 University of Washington

69

SPDY (“speedy”)

 Asetof HTTP improvements

— Multiplexed (parallel) HTTP requests
on one TCP connection

— Client priorities for parallel requests
— Compressed HTTP headers
— Server push of resources

* Now being tested and improved
— Default in Chrome, Firefox

— Basis for an HTTP/2 effort

CSE 461 University of Washington

70

mod pagespeed
* Observation:

— The way pages are written affects
how quickly they load

— Many books on best practices for
page authors and developers
* Key idea:

— Have server re-write (compile) pages
to help them load quickly!

— mod_pagespeed is an example

CSE 461 University of Washington

71

mod pagespeed (2)

* Apache server extension
— Software installed with web server

— Rewrites pages “on the fly” with rules
based on best practices

* Example rewrite rules:
— Minify Javascript
— Flatten multi-level CSS files
— Resize images for client
— And much more (100s of specific rules)

CSE 461 University of Washington

72

