4/8/15

Introduction to Computer Networks

Overview of the Link Layer

% Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Where we are in the Course

* Moving on to the Link Layer!

Application

Transport

Network
Link
Physical

CSE 461 University of Washington 2

4/8/15

Scope of the Link Layer

* Concerns how to transfer messages
over one or more connected links
— Messages are frames, of limited size
— Builds on the physical layer

Frame

1 -~ i

CSE 461 University of Washington

In terms of layers

Sending machine Receiving machine
Network Packet Packet
Frame
Link Header | Payload field Trailer Header | Payload field Trailer
Virtual data path
I I
Physical L Actual data path J

CSE 461 University of Washington

4/8/15

Typical Implementation of Layers

Application

Computer

: 4+— Operating System
Network
Driver
Link
: Network Interface
M ——— T card (NIQ)
PHY
~— Cable (medium)

CSE 461 University of Washington

Topic

* The Physical layer gives us a stream
of bits. How do we interpret it as a

sequence of frames?
1 A

l — ..10110 ... /

CSE 461 University of Washington

4/8/15

Byte Count

* First try:

— Let’s start each frame with a
length field!

— It’s simple, and hopefully good
enough ...

CSE 461 University of Washington

Byte Count (2)

* How well do you think it works?

Byte count One byte

(5] 1[2]3[4]s[e[7]8]o]sfo]1][2]3[4]s[6]8]7][s[0f0]1][2]3]

v v v v

Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes

CSE 461 University of Washington

4/8/15

Byte Count (3)

 Difficult to re-synchronize after framing error
— Want an easy way to scan for a start of frame

Error

(5[[2[2[al7 e[]e o e o[1] 2[2[4]= e a7 e o o[[2[3]

¥ Y

Frame 1 Frame 2 Now a byte
(Wrong) count

CSE 461 University of Washington 9

Byte Stuffing

* Betteridea:
— Have a special flag byte value that
means start/end of frame
— Replace (“stuff”) the flag inside the
frame with an escape code

— Complication: have to escape the
escape code too!

FLAG| Header Payload field Trailer |FLAG

CSE 461 University of Washington 10

4/8/15

Byte Stuffing (2)

* Rules:

— Replace each FLAG in data with ESC FLAG
— Replace each Escin data with ESC ESC

Original bytes

A FLAG B

A ESC B

A ESC | [FLAG

A ESC | | ESC

CSE 461 University of Washington

—_—

11

Byte Stuffing (3)

* Now any unescaped FLAG is the start/end of a frame

Original bytes

A FLAG B

A ESC B

A ESC | [FLAG

A ESC | | ESC

CSE 461 University of Washington

After stuffing

ESC | |FLAG B

ESC || ESC B

ESC || ESC | | ESC | |FLAG
ESC ||ESC||ESC| | ESC

12

4/8/15

Bit Stuffing

e Can stuff at the bit level too

— Assume a flag has six
consecutive 1s

— On transmit, after five 1s in the
data, inserta 0

— On receive, a 0 after five 1s is
deleted

CSE 461 University of Washington 13

Bit Stuffing (2)
* Example:

Data bits 011011111111111111110010

Transmitted bits
with stuffing

CSE 461 University of Washington 14

4/8/15

Bit Stuffing (3)
* So how does it compare with byte stuffing?

Data bits 011011111111111111110010

Transmitted bits 011011111011111011111010010
with stuffing \ T
Stuffed bits

CSE 461 University of Washington

15

Link Example: PPP over SONET

 PPPis Point-to-Point Protocol

* Widely used for link framing

— E.g., itis used to frame IP
packets that are sent over
SONET optical links

CSE 461 University of Washington

16

4/8/15

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the
framing that carries an IP packet over the link

IP packet

Router\ P P

PPP PPP |___PPPframe |

SONET T?bp;'rca' SONET [SONET payload |[SONET payload |
N4 I
PPP frames may be split over
Protocol stacks SONET payloads
CSE 461 University of Washington 17

Link Example: PPP over SONET (3)

* Framing uses byte stuffing

— FLAG is OX7E and ESC is Ox7D. To stuff (unstuff) a byte,
add (remove) ESC, and XOR byte with 0x20

Bytes 1 1 1 1or2 Variable 2o0r4 1
FI Add Control N Fi
ag lIESS! ontro ag
01111110 | 11111111 | oooooo11 | Frotocel Pay::’ad Checksum | 01411110
)
CSE 461 University of Washington 18

4/8/15

Topic

* Some bits will be received in error due
to noise. What can we do?

— Detect errors with codes »

— Correct errors with codes »
— Retransmit lost frames Later

 Reliability is a concern that cuts
across the layers — we’ll see it again

CSE 461 University of Washington 19

Problem — Noise may flip received bits

. 11 I E
Signal g 5 ! !

Slightly 1 1. ¢ 1
Noisy ‘ogi{ | ‘10i0/0i{0]

oisy 0 0 0 0 0

CSE 461 University of Washington 20

10

4/8/15

Approach — Add Redundancy

* Error detection codes
— Add check bits to the message bits to let
some errors be detected
* Error correction codes

— Add more check bits to let some errors be
corrected

* Key issue is now to structure the code
to detect many errors with few check
bits and modest computation

CSE 461 University of Washington 21

Motivating Example

* Asimple code to handle errors:

— Send two copies! Error if different.

* How good is this code?
— How many errors can it detect/correct?
— How many errors will make it fail?

CSE 461 University of Washington 22

11

4/8/15

Motivating Example (2)

* We want to handle more errors

with less overhead

— Will look at better codes; they are
applied mathematics

— But, they can’t handle all errors

— And they focus on accidental errors
(will look at secure hashes later)

CSE 461 University of Washington

23

Using Error Codes

Codeword consists of D data plus R
check bits (=systematic block code)

Data bits Check bits

D R=fn(D) —>

Sender:

— Compute R check bits based on the D
data bits; send the codeword of D+R bits

CSE 461 University of Washington

24

12

4/8/15

Using Error Codes (2)

* Receiver:
— Receive D+R bits with unknown errors

— Recompute R check bits based on the
D data bits; error if R doesn’t match R’

Data bits Check bits
—> D R’ \\
/1

=?

R=fn(D)

CSE 461 University of Washington 25

Intuition for Error Codes
* For D data bits, R check bits:

All —s
codewords

Correct
codewords

e Randomly chosen codeword is unlikely
to be correct; overhead is low

CSE 461 University of Washington 26

13

4/8/15

Hamming Distance

e Distance is the number of bit flips
needed to change D, to D,

* Hamming distance of a code is the
minimum distance between any
pair of codewords

CSE 461 University of Washington 27

Hamming Distance (2)

* Error detection:

— For a code of distance d+1, up to d
errors will always be detected

CSE 461 University of Washington 28

14

4/8/15

Hamming Distance (3)

* Alternatively, error correction:

— For a code of distance 2d+1, up tod
errors can always be corrected

CSE 461 University of Washington 29

Introduction to Computer Networks

Error Detection (§3.2.2)

-I—S, Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

15

4/8/15

Topic

* Some bits may be received in error
due to noise. How do we detect this?
— Parity »
— Checksums »
— CRCs »

* Detection will let us fix the error, for
example, by retransmission (later).

CSE 461 University of Washington 31

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit
that is the sum of the D bits

— Sum is modulo 2 or XOR

CSE 461 University of Washington 32

16

4/8/15

Parity Bit (2)

* How well does parity work?
— What is the distance of the code?

— How many errors will it detect/
correct?

* What about larger errors?

CSE 461 University of Washington

33

Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

* Stronger protection than parity

CSE 461 University of Washington

34

17

4/8/15

Internet Checksum

e Sum is defined in 1s complement
arithmetic (must add back carries)
— And it’s the negative sum

* “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words ...” — RFC 791

CSE 461 University of Washington 35

Internet Checksum (2)

Sending: ggg%
1. Arrange data in 16-bit words ggg

2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

CSE 461 University of Washington 36

18

4/8/15

Internet Checksum (3)

- 0001
Sending: £903
1. Arrange data in 16-bit words et
2. Put zero in checksum position, add +(0000)

2ddf0

- dd£0

3. Add any carryover back to get 16 bits + 5
ddf2

4. Negate (complement) to get sum 220d

CSE 461 University of Washington

37

Internet Checksum (4)

_— 0001
Receiving: £203
1.Arrange data in 16-bit words feto

+ 220d

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check itis O

CSE 461 University of Washington

38

19

4/8/15

Internet Checksum (5)

N 0001
Receiving: £203
1.Arrange data in 16-bit words E‘ég’
2.Checksum will be non-zero, add + 220d
2£££d

: £££d

3.Add any carryover back to get 16 bits + 5
£EEE

4.Negate the result and check it is O 0000

CSE 461 University of Washington

39

Internet Checksum (6)

e How well does the checksum work?
— What is the distance of the code?

— How many errors will it detect/
correct?

* What about larger errors?

CSE 461 University of Washington

40

20

4/8/15

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

* Example with numbers:
— n =302, k=o0onedigit, C=3

CSE 461 University of Washington 41

CRCs (2)

* The catch:

— It’s based on mathematics of finite
fields, in which “numbers”
represent polynomials

— e.g, 10011010 is x” + x* + x3 + x1
 What this means:

— We work with binary values and
operate using modulo 2 arithmetic

CSE 461 University of Washington 42

21

4/8/15

CRCs (2)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

B w N e

* Receive Procedure:
1. Divide and check for zero remainder

CSE 461 University of Washington 43

CRCs (3)

100001 1 1 0 -=— Quotient (thrown away)

1
10011 /11010111110 00 0= Frame with four zeros appended

10011;5:::::-‘-
BEEERERRERE
10011 ¢ 4 4 & i
o000 1 il
00000 VY } ¢} 11

OO0 1T 1T« § 4 } Mo}

00000 § ! ! v 14
0011114 i 1i
OO0 00O ¥ E ': H
o1 111 i1
0O0OO0OO0O0OV¢% |}
11110 14
100 11 ¢ ¢
1101 0 |
1001 1y
100 10

100 1 1 ¥

00010

00 00O

1 0 =— Remainder
Transmittedframe: 1 1 0 1 0 1 1 1 1 1 0 0 1 0 =— Frame with four zeros appended
minus remainder
CSE 461 University of Washington 45

22

4/8/15

CRCs (4)

* Protection depend on generator

— Standard CRC-32 is 10000010
01100000 10001110 110110111

»
* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors
like checksums

CSE 461 University of Washington

46

Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

e Checksum used in Internet
— |IP, TCP, UDP ... but it is weak

* Parity
— Is little used

CSE 461 University of Washington

47

23

4/8/15

Introduction to Computer Networks

Error Correction (§3.2.3)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* Some bits may be received in error
due to noise. How do we fix them?

— Hamming code »
— Other codes »

* And why should we use detection
when we can use correction?

CSE 461 University of Washington 49

24

4/8/15

Why Error Correction is Hard

* If we had reliable check bits we
could use them to narrow down
the position of the error

— Then correction would be easy

e But error could be in the check

bits as well as the data bits!

— Data might even be correct

CSE 461 University of Washington 50

Intuition for Error Correcting Code

e Suppose we construct a code with a
Hamming distance of at least 3

— Need 23 bit errors to change one
valid codeword into another

— Single bit errors will be closest to a
unique valid codeword

* |f we assume errors are only 1 bit,
we can correct them by mapping an
error to the closest valid codeword

— Works for d errorsif HD > 2d 1

CSE 461 University of Washington 51

25

4/8/15

Intuition (2)

* Visualization of code:

QQQOQ‘QVaIid
O‘OO'Ocodeword
OO0000

000000,
O‘OQ‘Qcodgv?/(r)rd

CSE 461 University of Washington

Intuition (3)

e Visualization of code:

Three bit ‘ Q' O O Q O\Error
errors to O O Q ‘ Q codeword

gettoB

26

4/8/15

Hamming Code

* Gives a method for constructing a
code with a distance of 3
— Uses k check bits for 2k'1 data bits

— Put check bits in positions p that are
powers of 2, starting with position 1

— Check bit in position p is parity of
positions with a p term in their values

* Plus an easy way to correct [soon]

CSE 461 University of Washington

54

Hamming Code (2)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3,5, 7
— Check 2 covers positions 2, 3,6, 7
— Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

55

27

4/8/15

Hamming Code (3)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3,5, 7
— Check 2 covers positions 2, 3,6, 7
— Check 4 covers positions 4, 5, 6, 7

0100101 —

p;=0+1+1=0, p,=0+0+1=1, py,=1+0+1=0

CSE 461 University of Washington

56

Hamming Code (4)

* To decode:

— Recompute check bits (with parity
sum including the check bit)

— Arrange as a binary number

— Value (syndrome) tells error position
— Value of zero means no error

— Otherwise, flip bit to correct

CSE 461 University of Washington

57

28

4/8/15

Hamming Code (5)
* Example, continued
— 0100101

P1= Py=
P4=

Syndrome =
Data =

CSE 461 University of Washington

58

Hamming Code (6)
* Example, continued

—>0100101

p,=0+0+1+1=0, p,=1+0+0+1=0,
py=0+1+0+1=0

Syndrome = 000, no error
Data=0101

CSE 461 University of Washington

59

29

4/8/15

Hamming Code (7)
* Example, continued
— 0100111

P1= Py=
P4=

Syndrome =
Data =

CSE 461 University of Washington

60

Hamming Code (8)
* Example, continued

—>0100111

p=0+0+1+1=0, p,=1+0+1+1=1,
py=0+1+1+1=1

Syndrome =1 1 0, flip position 6
Data=010 1 (correct after flip!)

CSE 461 University of Washington

61

30

4/8/15

Other Error Correction Codes

* Codes used in practice are much
more involved than Hamming

* Convolutional codes (§3.2.3)

— Take a stream of data and output a
mix of the recent input bits

— Makes each output bit less fragile

— Decode using Viterbi algorithm
(which can use bit confidence values)

CSE 461 University of Washington

62

Detection vs. Correction

* Which is better will depend on the
pattern of errors. For example:

— 1000 bit messages with a bit error rate
(BER) of 1 in 10000

 Which has less overhead?

CSE 461 University of Washington

64

31

4/8/15

Detection vs. Correction (2)

* Assume bit errors are random
— Messages have 0 or maybe 1 error

* Error correction:
— Need ~10 check bits per message
— Overhead:

* Error detection:

— Need ~1 check bits per message plus 1000 bit
retransmission 1/10 of the time

— Overhead:

CSE 461 University of Washington

66

Detection vs. Correction (3)

* Assume errors come in bursts of 100
— Only 1 or 2 messages in 1000 have errors

* Error correction:
— Need >>100 check bits per message
— Overhead:

* Error detection:

— Need 327 check bits per message plus 1000
bit resend 2/1000 of the time

— Overhead:

CSE 461 University of Washington

67

32

4/8/15

Detection vs. Correction (4)

* Error correction:
— Needed when errors are expected
— Or when no time for retransmission

* Error detection:

— More efficient when errors are not
expected

— And when errors are large when
they do occur

CSE 461 University of Washington

68

Error Correction in Practice

* Heavily used in physical layer
— Convolutional codes widely used in practice

— LDPCis the future, used for demanding links
like 802.11, DVB, WiMAX, LTE, power-line, ...

* Error detection (w/ retransmission) is used in
the link layer and above for residual errors

* Also used in the application layer
— With an erasure error model
— E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington

69

33

4/8/15

Introduction to Computer Networks

Retransmissions (ARQ) (§3.3)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic
* Two strategies to handle errors:

1. Detect errors and retransmit frame
(Automatic Repeat reQuest, ARQ)

2. Correct errors with an error

correcting code
Done this

CSE 461 University of Washington 71

34

4/8/15

ARQ

* ARQ often used when errors are
common or must be corrected

— E.g., WiFi, and TCP (later)

* Rules at sender and receiver:

— Receiver automatically acknowledges
correct frames with an ACK

— Sender automatically resends after a
timeout, until an ACK is received

CSE 461 University of Washington 72

ARQ,(2)

* Normal operation (no loss)

Sender Receiver

%}
ACK l

CSE 461 University of Washington 73

35

4/8/15

ARQ, (3)

* Loss and retransmission

Sender Receiver

Time

e |]
—

Timeout

CSE 461 University of Washington 74

So What'’s Tricky About ARQ?

* Two non-trivial issues:
— How long to set the timeout? »

— How to avoid accepting duplicate
frames as new frames »

e Want performance in the common
case and correctness always

CSE 461 University of Washington 75

36

4/8/15

Timeouts

* Timeout should be:
— Not too big (link goes idle)
— Not too small (spurious resend)

* Fairly easy on a LAN
— Clear worst case, little variation

* Fairly difficult over the Internet
— Much variation, no obvious bound
— We’'ll revisit this with TCP (later)

CSE 461 University of Washington 76

Duplicates
* What happens if an ACK is lost?

Sender Receiver

Timeout ‘{

CSE 461 University of Washington 77

37

4/8/15

Duplicates (2)
* What happens if an ACK is lost?

Sender Receiver

Timeout %

Frame
\ New
/ Frame??

ACK

CSE 461 University of Washington

78

Duplicates (3)
e Or the timeout is early?

Sender Receiver

Timeout %

CSE 461 University of Washington

79

38

4/8/15

Duplicates (4)
* Or the timeout is early?

Sender Receiver

Timeout PK

Frame??

ACK

CSE 461 University of Washington

80

Sequence Numbers

* Frames and ACKs must both carry
sequence numbers for correctness

* To distinguish the current frame
from the next one, a single bit (two
numbers) is sufficient

— Called Stop-and-Wait

CSE 461 University of Washington

81

39

4/8/15

Stop-and-Wait

* |n the normal case:

Sender Receiver

CSE 461 University of Washington

Time

l

82

Stop-and-Wait (2)

* |n the normal case:

Sender Receiver

Timeout ACK
\EL%
ACK 1

CSE 461 University of Washington

Time

l

83

40

4/8/15

Stop-and-Wait (3)

* With ACK loss:

Sender

Timeout

CSE 461 University of Washington

Receiver

ko

84

Stop-and-Wait (4)

 With ACK loss:

Sender

Timeout

CSE 461 University of Washington

Frame O
5\\\\\“-~\§ It's a
é’,/,,,/f””’ Resend!

ACKO

Receiver

ko

85

41

4/8/15

Stop-and-Wait (5)

* With early timeout:

Sender

Timeout

ACK

CSE 461 University of Washington

Receiver

86

Stop-and-Wait (6)

* With early timeout:

Sender

Timeout

OK...

ACK

Frame

ACKO

CSE 461 University of Washington

Receiver

It's a
Resend

87

42

4/8/15

Limitation of Stop-and-Wait

* |t allows only a single frame to be
outstanding from the sender:

— Good for LAN, not efficient for high BD
[

=

L
* Ex: R=1 Mbps, D=50ms

— How many frames/sec? If R=10 Mbps?

CSE 461 University of Washington

88

Sliding Window

* Generalization of stop-and-wait
— Allows W frames to be outstanding
— Can send W frames per RTT

1Lzt 15

— Various options for numbering
frames/ACKs and handling loss
* Will look at along with TCP (later)

CSE 461 University of Washington

89

43

4/8/15

Introduction to Computer Networks

Multiplexing(§2.5.3, 2.5.4)

—I—s' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* Multiplexing is the network word
for the sharing of a resource

* Classic scenario is sharing a link
among different users
— Time Division Multiplexing (TDM) »

— Frequency Division Multiplexing
(FDM) »

CSE 461 University of Washington 91

44

4/8/15

Time Division Multiplexing (TDM)

e Users take turns on a fixed schedule

1 | —
Round-robin
3 | — \ Guard time
CSE 461 University of Washington 92

Frequency Division Multiplexing (FDM)

* Put different users on different frequency bands

Channel 1

1+
o m
\
=5 L |
5 ‘l Channel 2
E Channel 2 \ Channel 1 Channel 3
5 N
® —_ -
e [\ ALV
£ =l [55 :
< | 60 64 68 72
Channel 3 ‘I Frequency (kHz) \
|
| B m /
Ly ' / Overall FDM channel
300 3100 60 64 68 72
Frequency (Hz) Frequency (kHz)
CSE 461 University of Wasnin gton 93

45

4/8/15

TDM versus FDM

* In TDM a user sends at a high rate a
fraction of the time; in FDM, a user
sends at a low rate all the time

Rate TDM

A Time

FDM

v

CSE 461 University of Washington

94

TDM versus FDM (2)

* In TDM a user sends at a high rate a
fraction of the time; in FDM, a user
sends at a low rate all the time

Rate TDM

10

A Time

FDM

v

CSE 461 University of Washington

95

46

4/8/15

TDM/FDM Usage

 Statically divide a resource

— Suited for continuous traffic, fixed
number of users

* Widely used in telecommunications
— TV and radio stations (FDM)

— GSM (2G cellular) allocates calls using
TDM within FDM

CSE 461 University of Washington

96

Multiplexing Network Traffic

* Network traffic is bursty
— ON/OFF sources
— Load varies greatly over time

R1$e
>Time

Rate

' >Time

CSE 461 University of Washington

97

47

4/8/15

Multiplexing Network Traffic (2)

* Network traffic is bursty
— Inefficient to always allocate user
their ON needs with TDM/FDM

CSE 461 University of Washington

98

Multiplexing Network Traffic (3)

e Multiple access schemes multiplex users according to
their demands — for gains of statistical multiplexing

Two users, each need R Together they need R’ < 2R

Rate
1 R Rate

>Time

CSE 461 University of Washington

99

48

4/8/15

Multiple Access

* We will look at two kinds of multiple
access protocols

1. Randomized. Nodes randomize their
resource access attempts
— Good for low load situations
2. Contention-free. Nodes order their
resource access attempts

— Good for high load or guaranteed
quality of service situations

CSE 461 University of Washington

100

Introduction to Computer Networks

Randomized Multiple Access
(§4.2.1-4.2.2,4.3.1-4.3.3)

—|—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

49

4/8/15

Topic

* How do nodes share a single link?
Who sends when, e.g., in WiFI?

— Explore with a simple model

=t == ==

* Assume no-one is in charge; this is
a distributed system

CSE 461 University of Washington 102

Topic (2)

* We will explore random multiple
access control (MAC) protocols

— This is the basis for classic Ethernet

— Remember: data traffic is bursty

CSE 461 University of Washington 103

50

4/8/15

ALOHA Network

e Seminal computer network @
connecting the Hawaiian ¢ &
islands in the late 1960s)
— When should nodes send? .

Hawaii

— A new protocol was devised @
by Norm Abramson ...

CSE 461 University of Washington 104

D (((r))

@2

ALOHA Protocol

* Simple idea:
— Node just sends when it has traffic.

— If there was a collision (no ACK
received) then wait a random time
and resend

* That’s it!

CSE 461 University of Washington 105

51

4/8/15

ALOHA Protocol (2)

* Some frames will User

be lost, but many * LT .l

B] |

may get through...) — — —
0 =i i |]

e Good idea? e 1 | 1 [=
CoIIision¥:/-<,—>i Time — L—\::_Eollision
CSE 461 University of Washington 106

ALOHA Protocol (3)

* Simple, decentralized protocol that
works well under low load!

* Not efficient under high load
— Analysis shows at most 18% efficiency
— Improvement: divide time into slots

and efficiency goes up to 36%
* We’ll look at other improvements

CSE 461 University of Washington 107

52

4/8/15

Classic Ethernet

* ALOHA inspired Bob Metcalfe to
invent Ethernet for LANs in 1973

— Nodes share 10 Mbps coaxial cable

— Hugely popular in 1980s, 1990s

CSE 461 University of Washington 108

CSMA (Carrier Sense Multiple Access)

* Improve ALOHA by listening for
activity before we send (Doh!)

— Can do easily with wires, not wireless

* So does this eliminate collisions?
— Why or why not?

CSE 461 University of Washington 109

53

4/8/15

CSMA (2)

 Still possible to listen and hear
nothing when another node is
sending because of delay

I I I
—=f —=f —=f
* CSMA is a good defense against
collisions only when BD is small

CSE 461 University of Washington 110

CSMA/CD (with Collision Detection)

* Can reduce the cost of collisions by
detecting them and aborting (Jam)
the rest of the frame time

— Again, we can do this with wires

Lamt) xxxxxxxx_Lam!
e ==

CSE 461 University of Washington 112

54

4/8/15

CSMA/CD Complications

* Want everyone who collides to
know that it happened

— Time window in which a node may
hear of a collision is 2D seconds

[FoX<i]

=t == =t

CSE 461 University of Washington

113

CSMA/CD Complications (2)

* Impose a minimum frame size that
lasts for 2D seconds

— So node can’t finish before collision
— Ethernet minimum frame is 64 bytes

i R

CSE 461 University of Washington

114

55

4/8/15

CSMA “Persistence”

 What should a node do if another
node is sending?

=

& =

* |dea: Wait until it is done, and send

CSE 461 University of Washington 115

CSMA “Persistence” (2)

* Problem is that multiple waiting
nodes will queue up then collide

— More load, more of a problem

Now! [Uhoh] Now!
e

CSE 461 University of Washington 116

56

4/8/15

CSMA “Persistence” (3)

* |ntuition for a better solution

— If there are N queued senders, we
want each to send next with
probability 1/N

Send p=V Whew Send p=V
e ==

CSE 461 University of Washington 117

Binary Exponential Backoff (BEB)

* Cleverly estimates the probability
— 1st collision, wait 0 or 1 frame times
— 2nd collision, wait from 0 to 3 times
— 3rd collision, wait from 0 to 7 times ...

* BEB doubles interval for each
successive collision

— Quickly gets large enough to work
— Very efficient in practice

CSE 461 University of Washington 118

57

4/8/15

Classic Ethernet, or IEEE 802.3

* Most popular LAN of the 1980s, 1990s

— 10 Mbps over shared coaxial cable, with baseband signals
— Multiple access with “1-persistent CSMA/CD with BEB”

—O

—
Transceiver

Interface
cable
Ether

CSE 461 University of Washington 119

Ethernet Frame Format

* Has addresses to identify the sender and receiver
* CRC-32 for error detection; no ACKs or retransmission
 Start of frame identified with physical layer preamble

Packet from Network layer (IP)

(¢
b))

Destination| Source Check-
Preamble address address Type Data Pad sum
£
b))
Bytes 8 6 6 2 0-1500 0-46 4
CSE 461 University of Washington 120

58

4/8/15

Modern Ethernet

* Based on switches, not multiple
access, but still called Ethernet

— WEe'll get to it in a later segment

Switch -

L/’Sﬁﬁﬁﬁﬁﬁﬁﬁi .
= / H””\ Switch ports

Twisted pair

CSE 461 University of Washington 121

Introduction to Computer Networks

Wireless Multiple Access
(§4.2.5, 4.4)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

59

4/8/15

Wireless Complications

* Wireless is more complicated than
the wired case (Surprise!)

1. Nodes may have different areas of
coverage — doesn’t fit Carrier Sense »

2. Nodes can’t hear while sending —
can’t Collision Detect »

7 N
CSMA/CD

CSE 461 University of Washington 124

Different Coverage Areas

* Wireless signal is broadcast and
received nearby, where there is
sufficient SNR

¥ N
~= [A|—{8]~—c|~=~
N 7N

Radio range

o

CSE 461 University of Washington 125

60

4/8/15

Hidden Terminals

* Nodes A and C are hidden terminals when sending to B
— Can’t hear each other (to coordinate) yet collide at B

— We want to avoid the inefficiency of collisions

\«’z; M/
/@\ /@

CSE 461 University of Washington 126

Exposed Terminals

* Band C are exposed terminals when sending to Aand D
— Can hear each other yet don’t collide at receivers Aand D

— We want to send concurrently to increase performance

w; w;
i@ /@\

CSE 461 University of Washington 127

61

4/8/15

Nodes Can’t Hear While Sending

* With wires, detecting collisions
(and aborting) lowers their cost

e More wasted time with wireless

Wired Wireless
Collision Collision

% Resend
X Time

CSE 461 University of Washington 128

Possible Solution: MACA

* MACA uses a short handshake instead of CSMA (Karn, 1990)
— 802.11 uses a refinement of MACA (later)

* Protocol rules:

1. A sender node transmits a RTS (Request-To-Send, with frame
length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)
3. Sender transmits the frame while nodes hearing the CTS stay silent
— Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington 129

62

4/8/15

MACA — Hidden Terminals

 A—>B with hidden terminal C
1. AsendsRTS, toB

CSE 461 University of Washington

130

MACA — Hidden Terminals (2)

* A—>B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS

CSE 461 University of Washington

131

63

4/8/15

MACA — Hidden Terminals (3)

* A—>B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS l‘ulull

A B C D
CTS CTS

CSE 461 University of Washington 132

MACA — Hidden Terminals (4)

 A->B with hidden terminal C
3. A sends frame while C defers

N)

F
rame B lc D

/p\

CSE 461 University of Washington 133

64

4/8/15

MACA — Exposed Terminals

« B2>A, C2>D as exposed terminals
—Band Csend RTSto Aand D

CSE 461 University of Washington 134

MACA — Exposed Terminals (2)

 B2>A, C>D as exposed terminals
—Aand Dsend CTStoBand C

RTS RTS

CSE 461 University of Washington 135

65

4/8/15

MACA — Exposed Terminals (3)

« B2>A, C2>D as exposed terminals
—AandDsend CTStoBand C

All OK All OK
RTS RTS
A B C D
CTS CTS

CSE 461 University of Washington 136

MACA — Exposed Terminals (4)

 B2>A, C>D as exposed terminals
—Aand Dsend CTStoBand C

Frame Fram

CSE 461 University of Washington 137

66

4/8/15

802.11, or WiFi

* Very popular wireless LAN To Network

started in the 1990s

* Clients get connectivity from a
(wired) AP (Access Point)

* It’s a multi-access problem ©

* Various flavors have been
developed over time
— Faster, more features

CSE 461 University of Washington

138

802.11 Physical Layer

* Uses 20/40 MHz channels on ISM bands
— 802.11b/g/n on 2.4 GHz
— 802.11 a/non 5 GHz

* OFDM modulation (except legacy 802.11b)
— Different amplitudes/phases for varying SNRs
— Rates from 6 to 54 Mbps plus error correction

— 802.11n uses multiple antennas; see “802.11
with Multiple Antennas for Dummies”

CSE 461 University of Washington

67

4/8/15

802.11 Link Layer

* Multiple access uses CSMA/CA (next); RTS/CTS optional

* Frames are ACKed and retransmitted with ARQ

* Funky addressing (three addresses!) due to AP

* Errors are detected with a 32-bit CRC

* Many, many features (e.g., encryption, power save)
Packet from Network layer (IP)

Frame . | Address 1 | Address 2 Check
control Duration (recipient) | (transmitter) Address 3 Sequence Data sequence
Bytes 2 2 6 6 6 2 0-2312 4
CSE 461 University of Washington 140

802.11 CSMA/CA for Multiple Access

* Sender avoids collisions by inserting small random gaps
— E.g., when both B and C send, C picks a smaller gap, goes first

Station A sends to D D acks A
2 r

A [Data][Ack]
i
a B ready to send | B sendsto D D acks B
' ! r r
B L ! | Data |[Ack |
= Y 4y
Wait for idle lBackoff Wait for idle :Rest of backoff
C ready to send : '/C sends to D 's D acks C
c i ! [Dam [Ack] .
Timeg ——
—J Timg

Wait for idle Backoff

CSE 461 University of Washington 141

68

4/8/15

Introduction to Computer Networks

Contention-Free Multiple
Access (§4.2.3)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* A new approach to multiple access
— Based on turns, not randomization

TR

g 7, N

CSE 461 University of Washington 144

69

4/8/15

Issues with Random Multiple Access

* CSMA is good under low load:
— Grants immediate access
— Little overhead (collisions)

e But not so good under high load:
— High overhead (expect collisions)
— Access time varies (lucky/unlucky)

* We want to do better under load!

CSE 461 University of Washington 145

Turn-Taking Multiple Access Protocols

* They define an order in which
nodes get a chance to send

— Or pass, if no traffic at present

* We just need some ordering ...
— E.g., Token Ring »
— E.g., node addresses

CSE 461 University of Washington 146

70

4/8/15

Token Ring

* Arrange nodes in a ring; token rotates “permission to

send” to each node in turn

Node /TOken

|

\

Direction of\\
transmission

CSE 461 University of Washington

147

Turn-Taking Advantages

* Fixed overhead with no collisions
— More efficient under load

* Regular chance to send with no
unlucky nodes

— Predictable service, easily extended
to guaranteed quality of service

CSE 461 University of Washington

148

71

4/8/15

Turn-Taking Disadvantages

* Complexity

— More things that can go wrong
than random access protocols!

* E.g., what if the token is lost?
— Higher overhead at low load

CSE 461 University of Washington

149

Turn-Taking in Practice

* Regularly tried as an improvement
offering better service
— E.g., qualities of service

e But random multiple access is hard
to beat
— Simple, and usually good enough
— Scales from few to many nodes

CSE 461 University of Washington

72

4/8/15

Introduction to Computer Networks

LAN Switches (§4.x)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

e How do we connect nodes with a
switch instead of multiple access

— Uses multiple links/wires
— Basis of modern (switched) Ethernet

5\ / 5
&=

Switch

CSE 461 University of Washington 152

73

4/8/15

Switched Ethernet

* Hosts are wired to Ethernet
switches with twisted pair
— Switch serves to connect the hosts
— Wires usually run to a closet

Switch

L — i
— ”””/\ Switch ports

Twisted pair

CSE 461 University of Washington

153

What’s in the box?

* Remember from protocol layers:

Hub, or Physical|Physical
| I

repeater All look like this:

Switch Link Link 5_
J— | E— -

Network | Network
Link Link

-1 L

Router

CSE 461 University of Washington

154

74

4/8/15

Inside a Hub

* All ports are wired together; more convenient and

reliable than a single shared wire
Port

CSE 461 University of Washington 155

Inside a Switch

* Uses frame addresses to connect input port to the right
output port; multiple frames may be switched in parallel

Port\ ______________ :

Fabric

CSE 461 University of Washington 156

75

4/8/15

Inside a Switch (2)

* Port may be used for both input and output (full-duplex)

— Just send, no multiple access protocol

124
and
2->3

CSE 461 University of Washington 157

Inside a Switch (3)

* Need buffers for multiple inputs to send to one output

— :’ Output
! .
Input BufZ:r Fabric ;Tutput Buffer

I

I
YV v v
I

CSE 461 University of Washington

76

4/8/15

Inside a Switch (4)

e Sustained overload will fill buffer and lead to frame loss

|

==/ = 100

v

L

Output

=3
©
c
(e d
v
|
| |

4 S
rd

Input Buffer Fabric

Output Buffer

CSE 461 University of Washington 159

Advantages of Switches

e Switches and hubs have replaced the
shared cable of classic Ethernet
— Convenient to run wires to one location

— More reliable; wire cut is not a single
point of failure that is hard to find

* Switches offer scalable performance
— E.g., 100 Mbps per port instead of 100
Mbps for all nodes of shared cable / hub

CSE 461 University of Washington

77

4/8/15

Switch Forwarding

* Switch needs to find the right output port for the

destination address in the Ethernet frame. How?
— Want to let hosts be moved around readily; don’t look at IP

| Ethernet Frame |—>
Source (O = —>§
==/ ==/
\——'=' > =
— = > =' Destination

CSE 461 University of Washington 161

Backward Learning

e Switch forwards frames with a
port/address table as follows:

1. To fill the table, it looks at the
source address of input frames

2. To forward, it sends to the port,
or else broadcasts to all ports

CSE 461 University of Washington 162

78

4/8/15

Backward Learning (2)
e 1: Asendsto D

Address| Port
A

B
C
D

Switch

CSE 461 University of Washington

163

Backward Learning (3)
e 2:Dsendsto A

Address| Port
A 1
B
C
D

Switch

CSE 461 University of Washington

79

4/8/15

Backward Learning (4)
* 3:Dsendsto A

Address| Port
A 1
B
C
D 4

Switch

CSE 461 University of Washington

165

Backward Learning (5)
* 3:Dsendsto A

A Port Address| Port
A 1
B D B
3 4 C
C T D 4
Switch

CSE 461 University of Washington

80

4/8/15

Learning with Multiple Switches

e Just works with multiple switches and a mix of hubs,
assuming no loops in the topology, E.g., A sends to D

CSE 461 University of Washington

Switch

Hub

167

Learning with Multiple Switches (2)

* Just works with multiple switches and a mix of hubs
assuming no loops, e.g., A sends to D then D sends to A

A

B

C

CSE 461 University of Washington

3

!

Switch

Port

/

D

Hub

81

4/8/15

Introduction to Computer Networks

Switch Spanning Tree (§4.x)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* How can we connect switches in
any topology so they just work

— This is part 2 of switched Ethernet

—=p—T==—==

= e =

Loops — yikes!

CSE 461 University of Washington 170

82

4/8/15

Problem — Forwarding Loops

* May have a loop in the topology
— Redundancy in case of failures g

— Or a simple mistake

Redundant

° : “«: ” Links
Want LAN switches to “just work —_—

— Plug-and-play, no changes to hosts 5
— But loops cause a problem ...

CSE 461 University of Washington 171

Forwarding Loops (2)
* Suppose the network is started and

?
A sends to F. What happens: == =n

K
| Left / Right

S35 1

CSE 461 University of Washington 172

83

4/8/15

Forwarding Loops (3)
e Suppose the network is started and

A sends to F. What happens?
— A C> B, D-left, D-right =B}
— D-left = C-right, E, F
— D-right & C-left, E, F
— C-right > D-left, A, B
— C-left = D-right, A, B
— D-left 2> ...
— D-right > ...

CSE 461 University of Washington

173

Spanning Tree Solution

* Switches collectively find a
spanning tree for the topology

— A subset of links that is a tree (no
loops) and reaches all switches

— Then switches forward as normal
on the spanning tree

— Broadcasts will go up to the root of
the tree and down all the branches

CSE 461 University of Washington 174

84

4/8/15

Spanning Tree (2)

Topology One ST Another ST

==@ %@ %ﬁ
& e o e e

CSE 461 University of Washington 175

Spanning Tree (3)

Topology One ST Another ST

= o ay & = 2o

A

V5T 5
EF =2 o o o ==

CSE 461 University of Washington 176

85

4/8/15

Spanning Tree Algorithm

* Rules of the distributed game:
— All switches run the same algorithm
— They start with no information
— Operate in parallel and send messages
— Always search for the best solution

* Ensures a highly robust solution
— Any topology, with no configuration
— Adapts to link/switch failures, ...

CSE 461 University of Washington

177

Spanning Tree Algorithm (2)

e Qutline:

1. Elect a root node of the tree
(switch with the lowest address)

2. Grow tree as shortest distances
from the root (using lowest
address to break distance ties)

3. Turn off ports for forwarding if
they aren’t on the spanning tree

CSE 461 University of Washington

179

86

4/8/15

Spanning Tree Algorithm (3)

* Details:
— Each switch initially believes it is the root of the tree
— Each switch sends periodic updates to neighbors with:
* |ts address, address of the root, and distance (in hops) to root
— Switches favors ports with shorter distances to lowest root
* Uses lowest address as a tie for distances

Hi, I’'m C, the root is A, it’s 2 hops away] or (C, A, 2)
yapNw
depp—==/

CSE 461 University of Washington

180

Spanning Tree Example

* 1stround, sending:
— Asends (A, A, 0) to say it is root
— B, C, D, E, and F do likewise rA,A,OI B,B,0
* 1stround, receiving:
— Astill thinks is it (A, A, 0)
— B still thinks (B, B, 0)
— Cupdatesto (C, A, 1) D
— D updatesto (D, C, 1) /
— Eupdatesto (E, A, 1) 1E,E,O
— Fupdatesto (F, B, 1)

C,C,0

CSE 461 University of Washington

181

87

4/8/15

Spanning Tree Example (2)

e 2" round, sending

— Nodes send their updated state
« 2" round receiving:

— A remains (A, A, 0)

— B updatesto (B, A, 2) viaC

— Cremains (C, A, 1)

— D updatesto (D, A, 2) via C

— Eremains (E, A, 1)

— F remains (F, B, 1)

CSE 461 University of Washington

AA,0]

B,B,0

F,B,1

182

Spanning Tree Example (3)

* 3" round, sending

— Nodes send their updated state
 3rdround receiving:

— Aremains (A, A, 0)

— B remains (B, A, 2) viaC

— Cremains (C, A, 1)

— D remains (D, A, 2) via C-left

— Eremains (E, A, 1)

— Fupdatesto (F, A, 3) viaB

CSE 461 University of Washington

AA,0]

B,A,2

[

EAL

F,B,1

88

4/8/15

Spanning Tree Example (4)

e 4% round

— Steady-state has been reached F

AA,0]

— Nodes turn off forwarding that is not
on the spanning tree

e Algorithm continues to run

— Adapts by timing out information

CA1l

y
D,A2

— E.g., if A fails, other nodes forget it, |
and B will become the new root

CSE 461 University of Washington

B,A,2

F,A3

184

Spanning Tree Example (5)

* Forwarding proceeds as usual on the ST

Initially D sends to F:

F

AA,0]

* And F sends back to D:

CA1l

D,A2

[

CSE 461 University of Washington

B,A,2

89

4/8/15

Spanning Tree Example (6)

* Forwarding proceeds as usual on the ST

* Initially D sends to F:
~ D Cleft 1AA0] B,A,2]
— C2>AB
— ADE C,A,1
— B>F

* And F sends back to D:
-~ F>B

— B>C
_ 5o A1) (A3

(hm, not such a great route)

CSE 461 University of Washington 186

90

