CSE 461 - Module 7B: MAC Layer Part 2

Ethernet: Overview

- Adapt/improve Aloha for wires
- Original Ethernet
 - 1, 3, 10 Mbps

- Collisions are possible
- Maximum length of segment is restricted by signal attentuation AND collision resolution protocol
- Subsequent Ethernets
 - 100, 1000, 10000 Mbps

• Ethernet header

	Ethernet						
	7	1	6	6	2	46-1500	4
Field length, in bytes	Preamble	SOF	Destination address	Source address	Туре	Data	FCS
				IEEE	802.3		
	7	1	6	6	2	46-1500	4
Field length, in bytes	Preamble	SOF	Destination address	Source address	Length	602.2 header and data	FCS
	SOF - Start-of-frame delimiter						

FCS = Frame check sequence

Original Ethernet

- It's a wire. Carrier sense is easy.
 - It's a wire. Losses occur only if there are collisions.
 - No ACKs
 - Collision detection (by listening while transmitting)
- There is a:
 - minimum frame length
 - maximum segment length
 - Ethernet collision resolution addresses congestion collapse
 - If we set the window size, W, in Aloha's collision resolution scheme, then once the number of stations gets large the goodput falls to zero

Collision Resolution: Binary Exponential Backoff

- An adaptive version of Aloha
- First: When you collide, stop transmitting
 - \circ $\;$ This is one benefit of collision detection
- Second: Choose a delay U[0,W] and wait that long
 - W is initially 1
 - Delay measured in "contention intervals"
- Third: When delay expires, perform carrier sense. Defer if the medium is busy. Transmit when the medium becomes free.
- Fourth: If you collide again, set W = 2 * W and go to the second step
- Try some maximum number of times (e.g., 16) and then report that you can't send the frame

Informal Analysis

- If we knew there were N stations involved in the collision, the best choice of W would be N
- We don't know N
- We search for it, trading off the number of collisions required to resolve it against the number of idle contention intervals that go by unused
- Note: transmissions tend to synchronize stations those stations that become active, leading to a collision

Ethernet Evolution

• Why is modern Ethernet a star topology?