CSE 461 - Module 7: Medium Access Control (MAC) Layer Part 1 Topic: How to share a "channel"

- Channels
- Wires, RF spectrum, fiber
- Full duplex / half duplex
- Share by:
- time or frequency or code
- Static vs. dynamic sharing
- Static: OTA TV (frequency), classrooms (time), ??? (code division)
- Dynamic: seats in the HUB dining area, Go cars
- Dynamic contention-free: gas station bathrooms that require a key
- Static vs. Dynamic
- Pro's of each
- Con's of each
- Bursty traffic

Channel Properties

- Synchronized vs. unsynchronized transmissions
- Carrier sense, or not
- Collisions and collision detection

Code Division Multiplexing

- Section 2.5.5 of the text
- All stations are allowed to send at the same time, using the same range of frequencies
- Each station encodes data using a chip sequence
- Chip sequences are orthogonal to each other
- Dot product of any two distinct sequences is 0
- Dot product of a sequence with itself is m (length of the sequence)
- Dot product of a sequence with the negations of itself is -m
- Example sequences:
- $A:(1,1,1,1), B:(1,1,-1,-1), C:(1,-1,-1,1), D:(1,-1,1,-1)$
- Transmit your sequence when you have a 1 to send, and transmit negation of your sequence when you have a 0 to send
- Example:
- Data-A: 1, B:1, C:0, D:0
- $\mathrm{A}:(1,1,1,1), \mathrm{B}:(1,1,-1,-1), \mathrm{C}:(-1,1,1,-1), \mathrm{D}:(-1,1,-1,1)$
- Decode
- Your receive sum of the signals sent
- Take dot product of that with chip sequence for station you want to listen to
- If result is positive, that station sent a 1 ; if negative, it sent a 0
- Example: A: 1, B: 1, C: 0, D: 0
- $(1,1,1,1)+(1,1,-1,-1)+(-1,1,1,-1)+(-1,1,-1,1)=(0,4,0,0)$
- Listen for A: $(0,4,0,0) \operatorname{dot}(1,1,1,1)=0 * 1+4^{*} 1+0^{*} 1+0 * 1=4$
- So A sent 1
- Listen for C: $(0,4,0,0) \operatorname{dot}(1,-1,-1,1)=-4$
- So C sent 0

Dynamic Multiple Access: Pure Aloha

- Original multiple access protocol
- Basic protocol: when you have data, send it
- No carrier sense, no collision detection
- But does have lost frame detection and retransmission
- Collision resolution protocol
- If you collide, pick a random delay in $[0, \mathrm{~T}]$ and then send again
- Should T be big or small?
- Pure Aloha capacity
- What is required for a transmission to succeed?
- Assuming Poisson arrivals (basically, coin flips in each of infinitesimal time slots)
- When the overall transmission rate is G , the probablity of no transmissions in a period of length t is $e^{-G t}$
- Now assuming transmissions are all of same duration (and calling that unit time)
- A collision occurs if someone else starts a transmission either during our transmission or less than 1 time unit before we start
- The probability of that is $e^{-2 \mathrm{G}}$
- So rate of successful transmissions is $\mathrm{Ge}^{-2 \mathrm{G}}$
- From $\mathrm{G}=0$ to $\mathrm{G}=1 / 2$ this increases, and then decreases
- Maximum is $1 / 2 \mathrm{e}$ (at $\mathrm{G}=1 / 2$)
- Note that the maximum occurs when the expected number of transmissions in a contention interval is 1
- Is the achievable maximum goodput affected by the length of the transmission?

Slotted Aloha

- We can do better if we somehow synchronize transmissions
- When you have data to send, wait to send until the next slot time arrives
- Slots are the length of one transmission
- The collision window is now one transmission time, rather than two
- Probability of a collision is now $\mathrm{e}^{-\mathrm{G}}$, and maximum achievable throughput is $1 / \mathrm{e}$ (at $\mathrm{G}=1$)

