
CSE 461 - Module 5: Dealing with Errors II

Network Errors: Assumptions (for now)
• Our goal is eliable transmission of messages

◦ Receiver delivers a single copy of each received message to the app, in order

▪ (We're assuming some lower layer deals with bit errors, so we deal only with messsage drops
and reordering)

• We're worried only about correctness, not performance (yet)

• Three parts to reliability:

◦ [Mainly sender] Make sure at least one copy of the message gets to the receiver

◦ [Mainly receiver] Make sure to detect and drop duplicates

◦ [Inherent, for now] Make sure you deliver messages in order

▪

ARQ (Automatic Repeat Request)
• Positive Acknowledgements

◦ The sender knows:

▪ What it can sense (e.g., a received ACK)

▪ What it can deduce from the causal chain implied by a correct implementation of the protocol

• The receiver sends an ACK only if it receives a message

• I got an ACK

• Therefore the receiver received a message

• Suppose sender observes
 send, send, send, ACK, send, ACK, send, ACK
What has receiver seen?

• How do we fix this?

Examples
• TCP

◦ What are the characterisitics of “the channel”

◦ How should ARQ work?

• 802.11 (wireless)

◦ What are the characteristics of “the channel”

◦ How should ARQ work?

• 802.3 (wired Ethernet)

◦ What are the characteristics of the channel?

◦ How should ARQ work?

Bit Errors

Modulation

Communication channels
◦ attenuation

◦ noise

◦ limited bandwidth

Theoretical Limits
• Fourier theorem

• Nyquist Limit

◦ If signal has bandwidth B, the maximum symbol rate (i.e. ,noiseless channel) is 2B

▪ Sampling at rate 2B is sufficient to reconstruct the signal at all points, so further samples are
redundant

▪ Sampling at the limit

▪ Sampling below the limit (aliasing)

• Shannon Capacity Theorem

◦ No matter how many bits/symbol, for a channel with bandwidth B the maximum bit rate (capacity)
is B log2(1 + S/N) where S is the received signal strength and N is the noise.

▪ Higher power => higher bit rate or lower bit error rate (BER)
Lower power => lower bit rate and/or higher BER

Clocking
• Difficult/impossible to have sender and receiver clocks run at exactly the same rate

◦ They might run at the same rate for a little while

◦ You might need to resynchronize them

• At the extreme, you might synchronize on every sent bit

◦ Force an observable transition on every bit (e.g., 0 => low → high; 1 => high → low)

• 4B/5B

◦ no change in signal → 0; change in signal → 1

◦ Now want to make sure you send a 1 often enough

▪ What if the data is a long sequence of 0's?

◦ Idea: send 5 bits to represent 4 bits of data

▪ Choose 16 of the 32 5-bit combinations that have enough 1's

▪ Never send 00000, for instance

• Preambles

◦ Some schemes send non-data bits before a frame whose goal is to allow the receiver to lock onto the

senders clock rate

◦ 802.11:

▪ preamble contains 128 bit (essentially random) string for sync'ing

◦ Ethernet:

▪ 7 bytes of 10101010

Error Detection and Correction (TW 3.2)
• Key idea:

◦ send k+n bits to represent k bits of data

• Only 2k valid codes out of the 2k possible bit strings

◦ If you get something that the sender would never send, it's an error

◦ If you get something that the sender might have sent, t's not an error, so long as the channel can't
produce “too many” bit errors

• Systematic code: k of the bits are the data, and n are function of the data

◦ Sender computes the n bits based on the k data bits

◦ Receiver computes what function based on the k data bits it actually received, and compares that
value to the n bits it actually received

▪ If they don't match, there's an error

• Error detection schemes

◦ Parity

▪ 1-bit odd parity: add a single bit to each block so that total number of 1 bits is odd

• 01100000 1
01100010 0

• What is detected? What isn't?

◦ Internet checksum

▪ (Basically) sum the words of the message and send that result at the end

◦ Cyclic redundancy code (CRC)

▪ Think of the message as a very big integer

▪ Send additional (low-order) bits so that the big integer is evenly divisible by some agreed upon
integer

▪ Why? Analyzable; good error detection properties (e.g., burst errors); easily implemented

• Error correction

◦ Hamming Distance

▪ Minimum number of bit flips required to go from one legal code word to another legal code
word

• Example: 0 → 00; 1 → 11

• Example: 0 → 000; 1 → 111

◦ If the maximum possible number of bit errors is less than half the Hamming distance of the code,
then every received bit string will be closest to a unique valid code

▪ That valid code is what was sent (under the assumption about the number of errors)

• Example: Hamming codes

◦ Will do in sections

	CSE 461 - Module 5: Dealing with Errors II
	Network Errors: Assumptions (for now)
	ARQ (Automatic Repeat Request)
	Examples
	Bit Errors
	Modulation
	Communication channels
	Theoretical Limits
	Clocking

	Error Detection and Correction (TW 3.2)

