
CSE 461 - Module 4: Dealing with Errors

Errors
• Bit level:

◦ Errors

▪ Inverted (corrupted) bits

▪ Missing bits / extra bits

◦ Mechanisms

▪ Error detection / Error correction

▪ Clock synchronization

• Network level

◦ Errors

▪ (Corrupted frames)

▪ Missing frames

▪ Duplicate frames

▪ Delayed frames

▪ Out of order frames

◦ Mechanisms

▪ Redundancy

• Timeout and retransmit

◦ ARQ

• Proactively / selectively retransmit

▪ Duplicate detection

• Naming

◦ Sequence numbers

▪ Judicious use of names (sequence numbers)

• Time-to-live (TTL)

▪ Re-order buffers

• Protocol level

◦ Errors

▪ malformed messages

▪ disallowed responses

◦ Mechanisms

▪ ignore

▪ send indication and then ignore

• Malicious agents

◦ Issues

▪ Privacy (intercept messages)

▪ Integrity (change message contents)

▪ Authenticity (who generated the message?)

▪ Authorization (is that who allowed to do what they're trying to do?)

▪ Denial of service (DOS)

◦ Attacks

▪ Man in the middle

▪ Buffer overrun

▪ Spoofing

▪ DNS tainting

▪ …

◦ Heartbleed exploit

▪ http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

Network Errors::Missing Frames::Timeout and Retransmit
• Tanenbaum & Wetherall: Section 3.3

• We'll assume a simple request-response protocol

• There are two potential issues:

◦ How does client know the server received the request?

◦ When the server receives a request, how does it know that it hasn't missed any earlier ones?

▪ Does it care?

• Client side solution: Automatic Repeat Request (ARQ)

◦ Positive acknowledgements (ACKs)

▪ Server sends an ACK only when it hears a request

▪ When I hear an ACK, I know the server heard a request

▪ When I don't hear an ACK, I know that I don't know whether or not the server heard the request

◦ What parts of this are essential to correctness and what parts are “just performance”?

▪ Consider leeway in the just performance choices

▪ Determining a good set of choices requires extensive experimentation / exper

• Basic ARQ Works for 1st message, doesn't work for second message. Why?

• Naming messages

http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

◦ UIDs

◦ Sequence numbers

• Client scheme (artist's rendition):
 msg = new Message(seqno++);
 for (attempt=0; attempt < MAX_ATTEMPTS; attempt++) {
 if (<process exiting>) break;
 response = sendBytes(msg);
 if (<response indicates IO error>) throw exception;
 if (<response indicates timeout>) continue;
 if (response.seqno == msg.seqno) { <process response>; break; }
 // ignore responses with unexpected sequence numbers
 }
 if (attempt >= MAX_ATTEMPTS) throw exception;

• Server's scheme (similarly sketchy):
 while (1) {
 if (<process exiting>) break;
 msg = readMsg();
 if (<response indicates IO error>) throw exception;
 if (<response indicates timeout>) continue;
 <process message – includes sending appropriate response>
 }

• Note: we're assuming each client has only one outstanding message in the above

◦ Haven't worried about multi-threaded clients

◦ Haven't yet implemented “sliding window”

• In more realistic situations, we might want to put buffers between the client and this code

◦ Sending

▪ Client invokes sendMessage(), which puts message in a queue and then returns

▪ A sending thread in an infinite loop removes messages from the queue and sends them

◦ Receiving

▪ Server loop puts messages in a queue

▪ Client calls readMessage(), which removes a message or blocks

• How does client thread wait for response message?

	CSE 461 - Module 4: Dealing with Errors
	Errors
	Network Errors::Missing Frames::Timeout and Retransmit

