
CSE 461 - Module 3: Software Structure

General Issue: Implementing Concurrency
• Correctness vs. performance

◦ Abstract correctness

▪ App provides correct results, ignoring all aspects of time

◦ Behavioral correctness

▪ Using app “feels” right

◦ Performance

▪ How much (hardware) resource is required to provide behavioral correctness

• Implementation ease / difficulties

◦ Can I understand the code I've written?

Example App: Web Server
• Operation

◦ Browser connection occurs

▪ Server parses request and determines what file to return

▪ Server reads the file

• Server processes the file (server side includes)

• Server reads included file

• Repeat

▪ Server writes result to socket

◦ Repeat

Computational Concurrency Alternatives
• Single threaded

• Multi-threaded

◦ (usually not fork-join parallelism)

• Thread pool / work queue

I/O Alternatives
http://www.ibm.com/developerworks/library/l-async/

Blocking Non-Blocking

Synchronous Read / write flags |= O_NONBLOCK;
 fcntl(fd, F_SETFL, flags);

Read / write

Asynchronous Select / poll
Non-blocking read/ write

aio interface
(start op; completion event)

• Providing concurrency with the synchronous, blocking model requires threads

◦ A thread per what?

◦ Pro's:

▪ Can often be most like single-threaded code (so is simple)

▪ Threads naturally encode state when performing a sequence of operations

◦ Con's:

▪ Can be slow

▪ Potential for leaks – threads are a resource

▪ Potential for race conditions

• Use thread-safe data structures / atomic data types

▪ Potential for (local) deadlock

• synchronous, non-blocking

◦ Pro's:

▪ Probably don't need dynamic thread creation

◦ Con's:

▪ What to do while waiting for IO

• Spinning

▪ Often leads to complicated code

• asynchronous, blocking

◦ CSE 333 Non-blocking IO / Select lecture slides

◦ Pro's:

▪ Probably don't need dynamic thread creation

▪ select provides solution to spinning issue

◦ Con's:

http://www.ibm.com/developerworks/library/l-async/
https://courses.cs.washington.edu/courses/cse333/12sp/lectures/lec19.pdf

▪ Can be slow if there are 1000's of connections

▪ Possible race conditions (between select call and acting on its return values)

Summary
• Choosing an appropriate code structure can be complicated

◦ http://www.kegel.com/c10k.html

• Our priorities in projects:

1. abstract functional correctness

2. ease of development / maintenance

3. efficiency

4. scalability

http://www.kegel.com/c10k.html

	CSE 461 - Module 3: Software Structure
	General Issue: Implementing Concurrency
	Example App: Web Server
	Computational Concurrency Alternatives
	I/O Alternatives
	Summary

