2/24/13

Introduction to Computer Networks

Transport Layer Overview
(§6.1.2-6.1.4)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Transport Layer Services

* Provide different kinds of data
delivery across the network to
applications

Unreliable Reliable

Messages |Datagrams (UDP)

Bytestream Streams (TCP)

CSE 461 University of Washington 5

2/24/13

Comparison of Internet Transports
* TCP is full-featured, UDP is a glorified packet

TCP (Streams)

UDP (Datagrams)

Connections

Datagrams

Bytes are delivered once,
reliably, and in order

Messages may be lost,
reordered, duplicated

Arbitrary length content

Limited message size

Flow control matches
sender to receiver

Can send regardless
of receiver state

Congestion control matches
sender to network

Can send regardless
of network state

CSE 461 University of Washington

User Datagram Protocol (UDP)

e Used by apps that don’t want

reliability or bytestreams
— Voice-over-IP (unreliable)

— DNS, RPC (message-oriented)

— DHCP (bootstrapping)

(If application wants reliability and
messages then it has work to do!)

CSE 461 University of Washington

15

2/24/13

Client (host 1)

1: socket

4: sendto

5: recvfrom?*

7: close

CSE 461 University of Washington

Datagram Sockets

Time

request

reply

Server (host 2)
1: socket
2: bind
3: recvfrom*

6: sendto

7: close

*= call blocks

17

UDP Header

* Uses ports to identify sending and
receiving application processes

e Datagram length up to 64K
* Checksum (16 bits) for reliability

32 Bits

Source port

Destination port

UDP length

UDP checksum

CSE 461 University of Washington

19

2/24/13

Introduction to Computer Networks

Connection Establishment
(§6.5.6, §6.5.7, §6.2.3)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Connection Establishment

* Both sender and receiver must be ready
before we start the transfer of data

— Need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)

* This is signaling

— It sets up state at the endpoints
— Like “dialing” for a telephone call

CSE 461 University of Washington 23

2/24/13

Three-Way Handshake

* Used in TCP; opens connection for
data in both directions

* Each side probes the other with a
fresh Initial Sequence Number (ISN)
— Sends on a SYNchronize segment
— Echo on an ACKnowledge segment

* Chosen to be robust even against
delayed duplicates

CSE 461 University of Washington

Active party
(client)

Passive party
(server)

24

Three-Way Handshake (2)

* Three steps:
— Client sends SYN(x)

— Server replies with SYN(y)ACK(x+1)

— Client replies with ACK(y+1)
— SYNs are retransmitted if lost

* Sequence and ack numbers
carried on further segments

CSE 461 University of Washington

Active party
(client)

lTime

SEQ~

Passive party
(server)
. Ve
SYn (SEQ=X)

2 P\C\(=\/\-\'1\

3

X+1 AC/(: »

25

2/24/13

Three-Way Handshake (3)

* Suppose delayed, duplicate Active party Passive party
. (Cllﬁ\t) (seﬂer)
copies of the SYN and ACK

arrive at the server! %%}
— Improbable, but anyhow ...
ACK=z+T]

CSE 461 University of Washington 26

Connection Release

* Orderly release by both parties when
done

— Delivers all pending data and “hangs up”
— Cleans up state in sender and receiver

* Key problem is to provide reliability
while releasing

— TCP uses a “symmetric” close in which
both sides shutdown independently

CSE 461 University of Washington 35

2/24/13

TCP Connection Release

* Two steps:
— Active sends FIN(x), passive ACKs
— Passive sends FIN(y), active ACKs
— FINs are retransmitted if lost

e Each FIN/ACK closes one
direction of data transfer

CSE 461 University of Washington

Active party

Passive party

36

TCP Connection Release (2)

* Two steps:
— Active sends FIN(x), passive ACKs
— Passive sends FIN(y), active ACKs
— FINs are retransmitted if lost

e Each FIN/ACK closes one
direction of data transfer

CSE 461 University of Washington

Active party

M
1
AC\(=)(+ 1\

AC\(=X+ 1‘

(W
2

(SEQ=

(SEQ=Y

=X+1, ACK=y+1)

Passive party

37

2/24/13

Introduction to Computer Networks

Sliding Windows (§3.4, §6.5.8)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Sliding Window

* Generalization of stop-and-wait

— Allows W packets to be
outstanding

— Can send W packets per RTT (=2D)

R

— Pipelining improves performance
— Need W=2BD to fill network path

CSE 461 University of Washington 48

2/24/13

Sliding Window Protocol

* Many variations, depending on
how buffers, acknowledgements,
and retransmissions are handled

* Go-Back-N »
— Simplest version, can be inefficient

* Selective Repeat »
— More complex, better performance

CSE 461 University of Washington 51

Sliding Window — Sender

* Sender buffers up to W segments
until they are acknowledged
— LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
— Sends while LFS—LAR W

Sliding W=5)
Window l/Avallable
Acked U|nacked Un avai‘labl‘e
7 f ;
LAR LFS seq. number

CSE 461 University of Washington 52

2/24/13

Sliding Window — Sender (2)

* Transport accepts another segment
of data from the Application ...

— Transport sends it (as LFS—LAR = 5)

W=5
A
Acked U|nacked Un avai‘labl‘e
7 1 ;
LAR LFS seq. number

CSE 461 University of Washington

53

Sliding Window — Sender (3)

* Next higher ACK arrives from peer...
— Window advances, buffer is freed
— LFS—LAR = 4 (can send one more)

WA=5 /Available
¢\
Acked WUnacked Unavalil.
1 f ;
LAR LFS seq. number

CSE 461 University of Washington

54

10

2/24/13

Sliding Window — Go-Back-N

* Receiver keeps only a single packet
buffer for the next segment

— State variable, LAS = LAST ACK SENT

* Onreceive:

— If seg. number is LAS+1, accept and
pass it to app, update LAS, send ACK

— Otherwise discard (as out of order)

CSE 461 University of Washington 55

Sliding Window — Selective Repeat

* Receiver passes data to app in order,
and buffers out-of-order segments to
reduce retransmissions

* ACK conveys highest in-order segment,
plus hints about out-of-order segments

* TCP uses a selective repeat design;
we’ll see the details later

CSE 461 University of Washington 56

11

2/24/13

Sliding Window — Selective Repeat (2)

* Buffers W segments, keeps state
variable, LAS = LAST ACK SENT

* Onreceive:
— Buffer segments [LAS+1, LAS+W]

— Pass up to app in-order segments
from LAS+1, and update LAS

— Send ACK for LAS regardless

CSE 461 University of Washington 57

Sliding Window — Retransmissions

* Go-Back-N sender uses a single timer
to detect losses

— On timeout, resends buffered packets
starting at LAR+1

* Selective Repeat sender uses a timer
per unacked segment to detect losses
— On timeout for segment, resend it
— Hope to resend fewer segments

CSE 461 University of Washington 58

12

2/24/13

Sequence Numbers

* Need more than 0/1 for Stop-and-Wait ...
— But how many?

* For Selective Repeat, need W numbers for
packets, plus W for acks of earlier packets
— 2W seq. numbers
— Fewer for Go-Back-N (W+1)

* Typically implement seq. number with an N-
bit counter that wraps around at 2N—1

— E.g., N=8: .., 253, 254, 255,0,1, 2, 3, ..

CSE 461 University of Washington 59

Sequence Time Plot

Transmissions

(at Sender) \

\ Acks

(at Receiver)

Seq. Number

Delay (=RTT/2)

Time _

rd

CSE 461 University of Washington 60

13

2/24/13

Sequence Time Plot (2)

4 Go-Back-N scenario

Seq. Number

Time _

N

CSE 461 University of Washington

61

Sequence Time Plot (3)

Retransmissions

Loss

Seq. Number

Timeout

Time _

N

CSE 461 University of Washington

62

14

2/24/13

Introduction to Computer Networks

Flow Control (§6.5.8)

% Computer Science & Engineering
\ 4

WA UNIVERSITY of WASHINGTON

Problem

 Sliding window uses pipelining to
keep the network busy
— What if the receiver is overloaded?

I — o, Vs
2
Cszy

Streaming video

Big Iron Wee Mobile

CSE 461 University of Washington 65

15

2/24/13

Sliding Window — Receiver

e Consider receiver with W buffers

— LAS=LAST ACK SENT, app pulls in-order
data from buffer with recv() call
Sliding

Window W=5

Finished Acceptable Too high

i .
LAS seq. number
CSE 461 University of Washington 66

Sliding Window — Receiver (2)

* Suppose the next two segments
arrive but app does not call recv()

W=5 Acceptable
A
K
Finished Too high
1 s
LAS seq. number
CSE 461 University of Washington 67

16

2/24/13

Sliding Window — Receiver (3)

* Suppose the next two segments
arrive but app does not call recv()
— LAS rises, but we can’t slide window!

W=5 Acceptable
A
K
Finished |Acked Too high
T .
LAS seq. number

CSE 461 University of Washington

68

Sliding Window — Receiver (4)

 |f further segments arrive (even in
order) we can fill the buffer
— Must drop segments until app recvs!
W=5 Nothing
A A
o cceptable
Fi‘nished Acked| Acked | Too High

) —
LAS seq. number

CSE 461 University of Washington

69

17

2/24/13

Sliding Window — Receiver (5)

* App recv() takes two segments
— Window slides (phew)

W=5 Acceptable
A

/
([
Finish)ed Acked Toop high
) —
LAS seq. number
CSE 461 University of Washington 70

Flow Control

* Avoid loss at receiver by telling
sender the available buffer space

— WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
A
K
Finished |Acked - Too high
1 .
LAS seq. number
CSE 461 University of Washington 71

18

2/24/13

Flow Control (2)

* Sender uses the lower of the sliding
window and flow control window
(WIN) as the effective window size

WIN=3
Fi‘nished Acked ﬁ Too high
T .
LAS seq. number

CSE 461 University of Washington

72

Flow Control (3)

Application Sender
* TCP-style example - e S
— sEQ/Ack sliding window f_A_@E@_ﬂ;_ﬁ_;:_
— Flow control with win &5 —— TS
— SEQ + length < ACK+WIN -
— 4KB buffer at receiver -)
— Circular buffer of bytes ==5wx [
R st

CSE 461 University of Washington

B

Receiver Receiver's

buffer
4K

Empty

o

< <
B
il

Application
reads 2K

=e

2L ==

v

[]
B
ry

73

19

2/24/13

Introduction to Computer Networks

Retransmission Timeouts
(§6.5.9)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Retransmissions

* With sliding window, the strategy
for detecting loss is the timeout
— Set timer when a segment is sent
— Cancel timer when ack is received

— If timer fires, retransmit data as lost

Retransmit!

CSE 461 University of Washington 76

20

2/24/13

Timeout Problem

* Timeout should be “just right”
— Too long wastes network capacity
— Too short leads to spurious resends
— But what is “just right”?

* Easyto set on a LAN (Link)
— Short, fixed, predictable RTT

* Hard on the Internet (Transport)
— Wide range, variable RTT

CSE 461 University of Washington

77

Example of RTTs

1000 | BCN->SEA->BCN

CSE 461 University of Washington

0 20 40 60 80 100 120 140 160Sec@nds 200

78

21

2/24/13

1000
900

Round Trip Time (ms)
w B w D ~ [0
o o o o o o
o O O O O o

N
o
o

100
0

| BCN->SEA->BCN

Example of RTTs (2)

Variation due to queuing at routers,

changes in network paths, etc.

Propagation (+transmission) delay = 2D

0 20 40 60 80

100 120 140 160Secwnds 200

CSE 461 University of Washington 79

Example of RTTs (3)

1000
900 Timer too high!
[7)]
£ 3800 =
@ 700 Need to adapt to the |-
E 600 i network conditions |-
.2 500
= A f -
'S 400 f —atH ' Timer too low!
C il
S 200 -
100
O T T T T T T T T T 1
0 20 40 60 80 100 120 140 1605ectgads 200
CSE 461 University of Washington 80

22

2/24/13

Adaptive Timeout

* Keep smoothed estimates of the RTT (1)
and variance in RTT (2)
— Update estimates with a moving average
1. SRTTy,; = 0.9*SRTT, + 0.1*RTT,,,
2. Svary,; =0.9*Svary + 0.1*|RTT,,,— SRTTy,,|

* Set timeout to a multiple of estimates
— To estimate the upper RTT in practice
— TCP Timeout, = SRTT + 4*Svar,

CSE 461 University of Washington 81

Example of Adaptive Timeout

1000
900
800
700
600
500 | SRTT
400
300 A f
200 -

100 Svar

O T T 1
0 20 40 60 80 100 120 140 16®ecarstls 200

RTT (ms)

CSE 461 University of Washington 82

23

2/24/13

Example of Adaptive Timeout (2)

1000
900 -
goo | meout Eﬁf} Timeout (SRTT + 4*Svar)
700 /

600 |

500
400 - N -

300 - Y 5
200 -

100 N ~——~~ \:--_.W,__,

0

RTT (ms)

0 20 40 60 80 100 120 140 16®ecarstls 200

CSE 461 University of Washington 83

Adaptive Timeout (2)

* Simple to compute, does a good
job of tracking actual RTT

— Little “headroom” to lower
— Yet very few early timeouts

* Turns out to be important for good
performance and robustness

CSE 461 University of Washington 84

24

2/24/13

Introduction to Computer Networks

Transmission Control Protocol

(TCP) (§6.5)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Reliable Bytestream

* Message boundaries not preserved from send() to recv()
— But reliable and ordered (receive bytes in same order as sent)

Sender
IP header \ / TCP header

A B C D

Four segments, each with 512 bytes of
data and carried in an IP packet

CSE 461 University of Washington

Receiver

A B C D

2048 bytes of data delivered
to app in a single recv() call

88

25

2/24/13

Reliable Bytestream (2)

e Bidirectional data transfer

— Control information (e.g., Ack)
piggybacks on data segments in

reverse direction

(ack a>s] .

CSE 461 University of Washington

89

TCP Header (1)

* Ports identify apps (socket API)
— 16-bit identifiers

Source port Destination port

Sequence number

Acknowledgement number

TCP
header
length

S|F
Y| I Window size
N|N

=0

E
Cc
E

G xC
X O >
I ®no

R
S
T

Checksum

Urgent pointer

T Options (0 or more 32-bit words)

i

CSE 461 University of Washington

90

26

2/24/13

TCP Header (2)

- SEQ/AcK used for sliding window
— Selective Repeat, with byte positions

Source port Destination port
Sequence number
Acknowledgement number
TCP CIEU|A|P|R|S|F
header W|CIR|C|S|S|Y]|I Window size
length RIE|G|K|H| T| N[N
Checksum Urgent pointer
% Options (0 or more 32-bit words) %

CSE 461 University of Washington

91

TCP Sliding Window — Receiver

* Cumulative AcK tells next expected
byte sequence number (“LAS+1”)

e Optionally, selective Acks (SACK)
give hints for receiver buffer state

— List up to 3 ranges of received bytes

ACK up to 100 and 200-299]

CSE 461 University of Washington

92

27

2/24/13

TCP Sliding Window — Sender

e Uses an adaptive retransmission
timeout to resend data from LAS+1

* Uses heuristics to infer loss quickly
and resend to avoid timeouts
— “Three duplicate Acks” treated as loss

Ack 100, | [Ack 100,
200-299] | 200-399 | 200-499

Sender decides 100-199 is lost

CSE 461 University of Washington

93

TCP Header (3)

- SYN/FIN/RST flags for connections
— Flag indicates segment is a SYN etc.

Source port Destination port

Sequence number

Acknowledgement number

3
I Window size

N

TCP
header
length

=0

E
Cc
E

G xC
X O >
I ®no
-0
Z<w0m

Checksum Urgent pointer

L Options (0 or more 32-bit words)

CSE 461 University of Washington

94

28

2/24/13

TCP Header (4)

 Window size for flow control
— Relative to Ack, and in bytes

Source port Destination port

Sequence number

Acknowledgement number

TCP CIEU|A|P|R|S|F
header W|IC|R|C| S| S|Y]|I Window size
length RIE|G|K|H| T| N[N
Checksum Urgent pointer
% Options (0 or more 32-bit words) %

CSE 461 University of Washington

95

29

