Introduction to Computer Networks

Retransmissions (ARQ) (§3.3)

Topic

- Two strategies to handle errors:
- Detect errors and retransmit frame (Automatic Repeat reQuest, ARQ)
- Correct errors with an error correcting codeDone this

CSE 461 University of Washington

ARQ

- ARQ often used when errors are common or must be corrected
 - E.g., WiFi, and TCP (later)
- Rules at sender and receiver:
 - Receiver automatically acknowledges correct frames with an ACK
 - Sender automatically resends after a timeout, until an ACK is received

CSE 461 University of Washington

79

ARQ (2)

Normal operation (no loss)

CSE 461 University of Washington

ARQ (3)

Loss and retransmission

CSE 461 University of Washington

81

So What's Tricky About ARQ?

- Two non-trivial issues:
 - How long to set the timeout? »
 - How to avoid accepting duplicate frames as new frames »
- Want performance in the common case and correctness always

CSE 461 University of Washington

Timeouts

- Timeout should be:
 - Not too big (link goes idle)
 - Not too small (spurious resend)
- Fairly easy on a LAN
 - Clear worst case, little variation
- Fairly difficult over the Internet
 - Much variation, no obvious bound
 - We'll revisit this with TCP (later)

CSE 461 University of Washington

83

Duplicates

What happens if an ACK is lost?

CSE 461 University of Washington

Duplicates (2)

What happens if an ACK is lost?

CSE 461 University of Washington

85

Duplicates (3)

Or the timeout is early?

CSE 461 University of Washington

Duplicates (4)

Or the timeout is early?

CSE 461 University of Washington

87

Sequence Numbers

- Frames and ACKs must both carry sequence numbers for correctness
- To distinguish the current frame from the next one, a single bit (two numbers) is sufficient
 - Called <u>Stop-and-Wait</u>

CSE 461 University of Washington

Stop-and-Wait

In the normal case:

CSE 461 University of Washington

29

Stop-and-Wait (2)

• In the normal case:

CSE 461 University of Washington

Stop-and-Wait (3)

With ACK loss:

CSE 461 University of Washington

91

Stop-and-Wait (4)

With ACK loss:

CSE 461 University of Washington

Stop-and-Wait (5)

With early timeout:

CSE 461 University of Washington

93

Stop-and-Wait (6)

With early timeout:

CSE 461 University of Washington

Limitation of Stop-and-Wait

- It allows only a single frame to be outstanding from the sender:
 - Good for LAN, not efficient for high BD

- Ex: R=1 Mbps, D = 50 ms
 - How many frames/sec? If R=10 Mbps?

CSE 461 University of Washington

95

Sliding Window

- Generalization of stop-and-wait
 - Allows W frames to be outstanding
 - Can send W frames per RTT

- Various options for numbering frames/ACKs and handling loss
 - Will look at along with TCP (later)

CSE 461 University of Washington

Introduction to Computer Networks

Multiplexing(§2.5.3, 2.5.4)

Topic

- Multiplexing is the network word for the sharing of a resource
- Classic scenario is sharing a link among different users
 - Time Division Multiplexing (TDM) »
 - Frequency Division Multiplexing (FDM) »

CSE 461 University of Washington

Time Division Multiplexing (TDM)

Users take turns on a fixed schedule

CSE 461 University of Washington

gc

Frequency Division Multiplexing (FDM)

Put different users on different frequency bands

CSE 461 University of Vvasnington

TDM versus FDM

 In TDM a user sends at a high rate a fraction of the time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington

101

TDM versus FDM (2)

 In TDM a user sends at a high rate a fraction of the time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington

TDM/FDM Usage

- Statically divide a resource
 - Suited for continuous traffic, fixed number of users
- Widely used in telecommunications
 - TV and radio stations (FDM)
 - GSM (2G cellular) allocates calls using TDM within FDM

CSE 461 University of Washington

103

Multiplexing Network Traffic

- Network traffic is <u>bursty</u>
 - ON/OFF sources
 - Load varies greatly over time

CSE 461 University of Washington

Multiplexing Network Traffic (2)

- Network traffic is bursty
 - Inefficient to always allocate user their ON needs with TDM/FDM

CSE 461 University of Washington

105

Multiplexing Network Traffic (3)

 Multiple access schemes multiplex users according to their demands – for gains of statistical multiplexing

CSE 461 University of Washington

Multiple Access

- We will look at two kinds of multiple access protocols
- 1. Randomized. Nodes randomize their resource access attempts
 - Good for low load situations
- Contention-free. Nodes order their resource access attempts
 - Good for high load or guaranteed quality of service situations

CSE 461 University of Washington

10

Introduction to Computer Networks

Randomized Multiple Access (§4. 2.1-4.2.2, 4.3.1-4.3.3)

Topic

- How do nodes share a single link?
 Who sends when, e.g., in WiFI?
 - Explore with a simple model

 Assume no-one is in charge; this is a distributed system

CSE 461 University of Washington

109

Topic (2)

- We will explore random <u>multiple</u> access control (MAC) protocols
 - This is the basis for classic Ethernet
 - Remember: data traffic is bursty

CSE 461 University of Washington

ALOHA Network

- Seminal computer network connecting the Hawaiian islands in the late 1960s
- , (B)
- When should nodes send?
- A new protocol was devised by Norm Abramson ...

CSE 461 University of Washington

111

ALOHA Protocol

- Simple idea:
 - Node just sends when it has traffic.
 - If there was a collision (no ACK received) then wait a random time and resend
- That's it!

CSE 461 University of Washington

ALOHA Protocol (2)

 Some frames will be lost, but many may get through...

Good idea?

CSE 461 University of Washington

113

ALOHA Protocol (3)

- Simple, decentralized protocol that works well under low load!
- Not efficient under high load
 - Analysis shows at most 18% efficiency
 - Improvement: divide time into slots and efficiency goes up to 36%
- We'll look at other improvements

CSE 461 University of Washington

Classic Ethernet

- ALOHA inspired Bob Metcalfe to invent Ethernet for LANs in 1973
 - Nodes share 10 Mbps coaxial cable
 - Hugely popular in 1980s, 1990s

: © 2009 IFFE

CSE 461 University of Washington

115

CSMA (Carrier Sense Multiple Access)

- Improve ALOHA by listening for activity before we send (Doh!)
 - Can do easily with wires, not wireless
- So does this eliminate collisions?
 - Why or why not?

CSE 461 University of Washington

CSMA (2)

 Still possible to listen and hear nothing when another node is sending because of delay

 CSMA is a good defense against collisions only when BD is small

CSE 461 University of Washington

117

CSMA (3)

 Still possible to listen and hear nothing when another node is sending because of delay

 CSMA is a good defense against collisions only when BD is small

CSE 461 University of Washington

CSMA/CD (with Collision Detection)

- Can reduce the cost of collisions by detecting them and aborting (Jam) the rest of the frame time
 - Again, we can do this with wires

CSE 461 University of Washington

119

CSMA/CD Complications

- Want everyone who collides to know that it happened
 - Time window in which a node may hear of a collision is 2D seconds

CSE 461 University of Washington

CSMA/CD Complications (2)

- Impose a minimum frame size that lasts for 2D seconds
 - So node can't finish before collision
 - Ethernet minimum frame is 64 bytes

CSE 461 University of Washington

121

CSMA "Persistence"

 What should a node do if another node is sending?

· Idea: Wait until it is done, and send

CSE 461 University of Washington

CSMA "Persistence" (2)

- Problem is that multiple waiting nodes will queue up then collide
 - More load, more of a problem

CSE 461 University of Washington

123

CSMA "Persistence" (3)

- Intuition for a better solution
 - If there are N queued senders, we want each to send next with probability 1/N

CSE 461 University of Washington

Binary Exponential Backoff (BEB)

- Cleverly estimates the probability
 - 1st collision, wait 0 or 1 frame times
 - 2nd collision, wait from 0 to 3 times
 - 3rd collision, wait from 0 to 7 times ...
- BEB doubles interval for each successive collision
 - Quickly gets large enough to work
 - Very efficient in practice

CSE 461 University of Washington

125

Classic Ethernet, or IEEE 802.3

- Most popular LAN of the 1980s, 1990s
 - 10 Mbps over shared coaxial cable, with baseband signals
 - Multiple access with "1-persistent CSMA/CD with BEB"

CSE 461 University of Washington

Ethernet Frame Format

- Has addresses to identify the sender and receiver
- CRC-32 for error detection; no ACKs or retransmission
- Start of frame identified with physical layer preamble

CSE 461 University of Washington

127

Modern Ethernet

- Based on switches, not multiple access, but still called Ethernet
 - We'll get to it in a later segment

CSE 461 University of Washington

Introduction to Computer Networks

Wireless Multiple Access (§4.2.5, 4.4)

Topic

- How do wireless nodes share a single link? (Yes, this is WiFi!)
 - Build on our simple, wired model

CSE 461 University of Washington

Wireless Complications

- Wireless is more complicated than the wired case (Surprise!)
 - Nodes may have different areas of coverage – doesn't fit Carrier Sense »
 - Nodes can't hear while sending can't Collision Detect »

CSE 461 University of Washington

131

Different Coverage Areas

 Wireless signal is broadcast and received nearby, where there is sufficient SNR

CSE 461 University of Washington

Hidden Terminals

- Nodes A and C are <u>hidden terminals</u> when sending to B
 - Can't hear each other (to coordinate) yet collide at B
 - We want to avoid the inefficiency of collisions

CSE 461 University of Washington

133

Exposed Terminals

- B and C are <u>exposed terminals</u> when sending to A and D
 - Can hear each other yet don't collide at receivers A and D
 - We want to send concurrently to increase performance

CSE 461 University of Washington

Nodes Can't Hear While Sending

- With wires, detecting collisions (and aborting) lowers their cost
- More wasted time with wireless

CSE 461 University of Washington

135

Possible Solution: MACA

- MACA uses a short handshake instead of CSMA (Karn, 1990)
 - 802.11 uses a refinement of MACA (later)
- Protocol rules:
 - A sender node transmits a RTS (Request-To-Send, with frame length)
 - 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
 - 3. Sender transmits the frame while nodes hearing the CTS stay silent
 - Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington

MACA - Hidden Terminals

- A→B with hidden terminal C
 - 1. A sends RTS, to B

Α

В

C

D

CSE 461 University of Washington

137

MACA – Hidden Terminals (2)

- A→B with hidden terminal C
 - 2. B sends CTS, to A, and C too

A RIS B

C

D

CSE 461 University of Washington

MACA – Hidden Terminals (3)

- A→B with hidden terminal C
 - 2. B sends CTS, to A, and C too

CSE 461 University of Washington

139

MACA – Hidden Terminals (4)

- A→B with hidden terminal C
 - 3. A sends frame while C defers

CSE 461 University of Washington

MACA – Exposed Terminals

- $B \rightarrow A$, $C \rightarrow D$ as exposed terminals
 - B and C send RTS to A and D

Α

В

C

D

CSE 461 University of Washington

141

MACA – Exposed Terminals (2)

- $B \rightarrow A$, $C \rightarrow D$ as exposed terminals
 - A and D send CTS to B and C

$$A \xrightarrow{RTS} B \xrightarrow{-} C \xrightarrow{RTS} D$$

CSE 461 University of Washington

MACA – Exposed Terminals (3)

- B→A, C→D as exposed terminals
 - A and D send CTS to B and C

CSE 461 University of Washington

143

MACA – Exposed Terminals (4)

- $B \rightarrow A$, $C \rightarrow D$ as exposed terminals
 - A and D send CTS to B and C

CSE 461 University of Washington

802.11, or WiFi

- Very popular wireless LAN started in the 1990s
- Clients get connectivity from a (wired) AP (Access Point)
- It's a multi-access problem ©
- Various flavors have been developed over time
 - Faster, more features

CSE 461 University of Washington

145

802.11 Physical Layer

- Uses 20/40 MHz channels on ISM bands
 - 802.11b/g/n on 2.4 GHz
 - 802.11 a/n on 5 GHz
- OFDM modulation (except legacy 802.11b)
 - Different amplitudes/phases for varying SNRs
 - Rates from 6 to 54 Mbps plus error correction
 - 802.11n uses multiple antennas; see "802.11 with Multiple Antennas for Dummies"

CSE 461 University of Washington

802.11 Link Layer

- Multiple access uses CSMA/CA (next); RTS/CTS optional
- Frames are ACKed and retransmitted with ARQ
- Funky addressing (three addresses!) due to AP
- Errors are detected with a 32-bit CRC
- Many, many features (e.g., encryption, power save)

CSE 461 University of Washington

147

802.11 CSMA/CA for Multiple Access

- Sender avoids collisions by inserting small random gaps
 - E.g., when both B and C send, C picks a smaller gap, goes first

The Future of 802.11 (Guess)

- Likely ubiquitous for Internet connectivity
 - Greater diversity, from low- to high-end devices
- Innovation in physical layer drives speed
 - And power-efficient operation too
- More seamless integration of connectivity
 - Too manual now, and limited (e.g., device-to-device)

CSE 461 University of Washington

149

Introduction to Computer Networks

Contention-Free Multiple Access (§4.2.3)

Topic

- A new approach to multiple access
 - Based on turns, not randomization

CSE 461 University of Washington

151

Issues with Random Multiple Access

- CSMA is good under low load:
 - Grants immediate access
 - Little overhead (collisions)
- But not so good under high load:
 - High overhead (expect collisions)
 - Access time varies (lucky/unlucky)
- We want to do better under load!

CSE 461 University of Washington

Turn-Taking Multiple Access Protocols

- They define an order in which nodes get a chance to send
 - Or pass, if no traffic at present
- We just need some ordering ...
 - E.g., Token Ring »
 - E.g., node addresses

CSE 461 University of Washington

153

Token Ring

 Arrange nodes in a ring; token rotates "permission to send" to each node in turn

CSE 461 University of Washington

Turn-Taking Advantages

- Fixed overhead with no collisions
 - More efficient under load
- Regular chance to send with no unlucky nodes
 - Predictable service, easily extended to guaranteed quality of service

CSE 461 University of Washington

155

Turn-Taking Disadvantages

- Complexity
 - More things that can go wrong than random access protocols!
 - E.g., what if the token is lost?
 - Higher overhead at low load

CSE 461 University of Washington

Turn-Taking in Practice

- Regularly tried as an improvement offering better service
 - E.g., qualities of service
- But random multiple access is hard to beat
 - Simple, and usually good enough
 - Scales from few to many nodes

CSE 461 University of Washington