Introduction to Computer Networks

Overview of the Link Layer

Where we are in the Course

Moving on to the Link Layer!

Application
Transport
Network
Link
Physical

CSE 461 University of Washington

Scope of the Link Layer

- Concerns how to transfer messages over one or more connected links
 - Messages are frames, of limited size
 - Builds on the physical layer

CSE 461 University of Washington

Typical Implementation of Layers

CSE 461 University of Washington

Typical Implementation of Layers (2)

Topics

Later

- 1. Framing
 - Delimiting start/end of frames
- 2. Error detection and correction
 - Handling errors
- 3. Retransmissions
 - Handling loss
- 4. Multiple Access
 - 802.11, classic Ethernet

5. Switching

Modern Ethernet

CSE 461 University of Washington

Introduction to Computer Networks

Framing (§3.1.2)

Topic

 The Physical layer gives us a stream of bits. How do we interpret it as a sequence of frames?

CSE 461 University of Washington

Framing Methods

- We'll look at:
 - Byte count »
 - Byte stuffing »
 - Bit stuffing »
- In practice, the physical layer often helps to identify frame boundaries
 - E.g., Ethernet, 802.11

CSE 461 University of Washington

11

Byte Count

- First try:
 - Let's start each frame with a length field!
 - It's simple, and hopefully good enough ...

CSE 461 University of Washington

Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington

13

Byte Count (3)

- Difficult to re-synchronize after framing error
 - Want an easy way to scan for a start of frame

CSE 461 University of Washington

Byte Stuffing

Better idea:

- Have a special flag byte value that means start/end of frame
- Replace ("stuff") the flag inside the frame with an escape code
- Complication: have to escape the escape code too!

CSE 461 University of Washington

15

Byte Stuffing (2)

Rules:

- Replace each FLAG in data with ESC FLAG
- Replace each ESC in data with ESC ESC

CSE 461 University of Washington

Byte Stuffing (3)

Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington

17

Bit Stuffing

- Can stuff at the bit level too
 - Assume a flag has six consecutive 1s
 - On transmit, after five 1s in the data, insert a 0
 - On receive, a 0 after five 1s is deleted

CSE 461 University of Washington

Bit Stuffing (2)

Example:

Data bits 011011111111111111110010

Transmitted bits with stuffing

CSE 461 University of Washington

19

Bit Stuffing (3)

So how does it compare with byte stuffing?

Data bits 011011111111111111110010

CSE 461 University of Washington

Link Example: PPP over SONET

- PPP is Point-to-Point Protocol
- Widely used for link framing
 - E.g., it is used to frame IP packets that are sent over
 SONET optical links

CSE 461 University of Washington

21

Link Example: PPP over SONET (2)

 Think of SONET as a bit stream, and PPP as the framing that carries an IP packet over the link

CSE 461 University of Washington

Link Example: PPP over SONET (3)

- Framing uses byte stuffing
 - FLAG is 0x7E and ESC is 0x7D. To stuff (unstuff) a byte, add (remove) ESC, and XOR byte with 0x20

CSE 461 University of Washington

23

Introduction to Computer Networks

Error Coding Overview (§3.2)

Topic

- Some bits will be received in error due to noise. What can we do?
 - Detect errors with codes »
 - Correct errors with codes »
 - Retransmit lost frames Later
- Reliability is a concern that cuts across the layers – we'll see it again

CSE 461 University of Washington

25

Problem – Noise may flip received bits

CSE 461 University of Washington

Approach – Add Redundancy

- Error detection codes
 - Add <u>check bits</u> to the message bits to let some errors be detected
- Error correction codes
 - Add more <u>check bits</u> to let some errors be corrected
- Key issue is now to structure the code to detect many errors with few check bits and modest computation

CSE 461 University of Washington

27

Motivating Example

- A simple code to handle errors:
 - Send two copies! Error if different.
- How good is this code?
 - How many errors can it detect/correct?
 - How many errors will make it fail?

CSE 461 University of Washington

Motivating Example (2)

- We want to handle more errors with less overhead
 - Will look at better codes; they are applied mathematics
 - But, they can't handle all errors
 - And they focus on accidental errors (will look at secure hashes later)

CSE 461 University of Washington

29

Using Error Codes

 Codeword consists of D data plus R check bits (=systematic block code)

Data bits Check bits

- Sender:
 - Compute R check bits based on the D data bits; send the codeword of D+R bits

CSE 461 University of Washington

Using Error Codes (2)

- Receiver:
 - Receive D+R bits with unknown errors
 - Recompute R check bits based on the
 D data bits; error if R doesn't match R'

CSE 461 University of Washington

31

R.W. Hamming (1915-1998)

- Much early work on codes:
 - "Error Detecting and Error Correcting Codes", BSTJ, 1950
- See also:
 - "You and Your Research", 1986

Source: IEEE GHN, © 2009, IEEE

CSE 461 University of Washington

Intuition for Error Codes

• For D data bits, R check bits:

 Randomly chosen codeword is unlikely to be correct; overhead is low

CSE 461 University of Washington

3

Hamming Distance

- Distance is the number of bit flips needed to change D₁ to D₂
- Hamming distance of a code is the minimum distance between any pair of codewords

CSE 461 University of Washington

Hamming Distance (2)

- Error detection:
 - For a code of distance d+1, up to d errors will always be detected

CSE 461 University of Washington

3

Hamming Distance (3)

- Alternatively, error correction:
 - For a code of distance 2d+1, up to d errors can always be corrected

CSE 461 University of Washington

Introduction to Computer Networks

Error Detection (§3.2.2)

Topic

- Some bits may be received in error due to noise. How do we detect this?
 - Parity »
 - Checksums »
 - CRCs »
- Detection will let us fix the error, for example, by retransmission (later).

CSE 461 University of Washington

Simple Error Detection – Parity Bit

- Take D data bits, add 1 check bit that is the sum of the D bits
 - Sum is modulo 2 or XOR

CSE 461 University of Washington

3

Parity Bit (2)

- How well does parity work?
 - What is the distance of the code?
 - How many errors will it detect/ correct?
- What about larger errors?

CSE 461 University of Washington

Checksums

- Idea: sum up data in N-bit words
 - Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

Stronger protection than parity

CSE 461 University of Washington

41

Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it's the negative sum
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." RFC 791

CSE 461 University of Washington

Internet Checksum (2)

Sending: 0001 f203

1. Arrange data in 16-bit words f4f5 f6f7

- 2. Put zero in checksum position, add
- 3. Add any carryover back to get 16 bits
- 4. Negate (complement) to get sum

CSE 461 University of Washington

43

Internet Checksum (3)

Sending:	0001 f203
1. Arrange data in 16-bit words	f4f5 f6f7
2. Put zero in checksum position, add	+(0000)
3. Add any carryover back to get 16 bits	2ddf0
4. Negate (complement) to get sum	ddf2 ↓ 220d

CSE 461 University of Washington

Internet Checksum (4)

Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

0001
f203
f4f5
f6f7
+ 220d

- 3. Add any carryover back to get 16 bits
- 4. Negate the result and check it is 0

CSE 461 University of Washington

45

Internet Checksum (5)

Receiving:	0001 f203
1. Arrange data in 16-bit words	f4f5 f6f7
2. Checksum will be non-zero, add	+ 220d
3. Add any carryover back to get 16 bits	2fffd
4. Negate the result and check it is 0	0000

CSE 461 University of Washington

Internet Checksum (6)

- How well does the checksum work?
 - What is the distance of the code?
 - How many errors will it detect/ correct?
- What about larger errors?

CSE 461 University of Washington

47

Cyclic Redundancy Check (CRC)

- Even stronger protection
 - Given n data bits, generate k check bits such that the n+k bits are evenly divisible by a generator C
- Example with numbers:
 - n = 302, k = one digit, C = 3

CSE 461 University of Washington

CRCs (2)

- The catch:
 - It's based on mathematics of finite fields, in which "numbers" represent polynomials
 - e.g, 10011010 is $x^7 + x^4 + x^3 + x^1$
- What this means:
 - We work with binary values and operate using modulo 2 arithmetic

CSE 461 University of Washington

49

CRCs (3)

- Send Procedure:
- Extend the n data bits with k zeros
- 2. Divide by the generator value C
- 3. Keep remainder, ignore quotient
- 4. Adjust k check bits by remainder
- Receive Procedure:
- 1. Divide and check for zero remainder

CSE 461 University of Washington

CRCs (4)

Data bits: 10011 1 1 0 1 0 1 1 1 1 1

1101011111

Check bits:

 $C(x)=x^4+x^1+1$

C = 10011

k = 4

CSE 461 University of Washington

51

CRCs (6)

- Protection depend on generator
 - Standard CRC-32 is 10000010 01100000 10001110 110110111

>>

- Properties:
 - HD=4, detects up to triple bit errors
 - Also odd number of errors
 - And bursts of up to k bits in error
 - Not vulnerable to systematic errors like checksums

CSE 461 University of Washington

53

Error Detection in Practice

- CRCs are widely used on links
 - Ethernet, 802.11, ADSL, Cable ...
- Checksum used in Internet
 - IP, TCP, UDP ... but it is weak
- Parity
 - Is little used

CSE 461 University of Washington

Introduction to Computer Networks

Error Correction (§3.2.3)

Topic

- Some bits may be received in error due to noise. How do we fix them?
 - Hamming code »
 - Other codes »
- And why should we use detection when we can use correction?

CSE 461 University of Washington

Why Error Correction is Hard

- If we had reliable check bits we could use them to narrow down the position of the error
 - Then correction would be easy
- But error could be in the check bits as well as the data bits!
 - Data might even be correct

CSE 461 University of Washington

57

Intuition for Error Correcting Code

- Suppose we construct a code with a Hamming distance of at least 3
 - Need ≥3 bit errors to change one valid codeword into another
 - Single bit errors will be closest to a unique valid codeword
- If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 - Works for d errors if HD ≥ 2d 1

CSE 461 University of Washington

Intuition (2) • Visualization of code: Valid codeword B CETTOR codeword CSE 461 University of Washington

Hamming Code

- Gives a method for constructing a code with a distance of 3
 - Uses $n = 2^k k 1$, e.g., n=4, k=3
 - Put check bits in positions p that are powers of 2, starting with position 1
 - Check bit in position p is parity of positions with a p term in their values
- Plus an easy way to correct [soon]

CSE 461 University of Washington

61

Hamming Code (2)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

1 2 3 4 5 6 7

CSE 461 University of Washington

Hamming Code (3)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

$$\underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{0}_{6} \underbrace{1}_{7}$$

$$p_1 = 0+1+1 = 0$$
, $p_2 = 0+0+1 = 1$, $p_4 = 1+0+1 = 0$

CSE 461 University of Washington

63

Hamming Code (4)

- To decode:
 - Recompute check bits (with parity sum including the check bit)
 - Arrange as a binary number
 - Value (syndrome) tells error position
 - Value of zero means no error
 - Otherwise, flip bit to correct

CSE 461 University of Washington

Hamming Code (5)

Example, continued

CSE 461 University of Washington

65

Hamming Code (6)

Example, continued

CSE 461 University of Washington

Hamming Code (7)

Example, continued

CSE 461 University of Washington

67

Hamming Code (8)

• Example, continued

```
\rightarrow 0 1 0 0 1 1 1
p_1 = 0 + 0 + 1 + 1 = 0, \quad p_2 = 1 + 0 + 1 + 1 = 1,
p_4 = 0 + 1 + 1 + 1 = 1
Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)
```

CSE 461 University of Washington

Other Error Correction Codes

- Codes used in practice are much more involved than Hamming
- Convolutional codes (§3.2.3)
 - Take a stream of data and output a mix of the recent input bits
 - Makes each output bit less fragile
 - Decode using Viterbi algorithm (which can use bit confidence values)

CSE 461 University of Washington

69

Other Codes (2) – LDPC

- Low Density Parity Check (§3.2.3)
 - LDPC based on sparse matrices
 - Decoded iteratively using a belief propagation algorithm
 - State of the art today
- Invented by Robert Gallager in 1963 as part of his PhD thesis
 - Promptly forgotten until 1996 ...

Source: IEEE GHN, © 2009, IEEE

CSE 461 University of Washington

Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u>
 (BER) of 1 in 10000
- Which has less overhead?

CSE 461 University of Washington

71

Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u>
 (<u>BER</u>) of 1 in 10000
- Which has less overhead?
 - It depends! We need to know more about the errors

CSE 461 University of Washington

Detection vs. Correction (2)

- Assume bit errors are random
 - Messages have 0 or maybe 1 error
- Error correction:
 - Need ~10 check bits per message
 - Overhead:
- Error detection:
 - Need ~1 check bits per message plus 1000 bit retransmission 1/10 of the time
 - Overhead:

CSE 461 University of Washington

73

Detection vs. Correction (3)

- Assume errors come in bursts of 100
 - Only 1 or 2 messages in 1000 have errors
- Error correction:
 - Need >>100 check bits per message
 - Overhead:
- Error detection:
 - Need 32? check bits per message plus 1000 bit resend 2/1000 of the time
 - Overhead:

CSE 461 University of Washington

Detection vs. Correction (4)

- Error correction:
 - Needed when errors are expected
 - Or when no time for retransmission
- Error detection:
 - More efficient when errors are not expected
 - And when errors are large when they do occur

CSE 461 University of Washington

75

Error Correction in Practice

- Heavily used in physical layer
 - LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE, power-line, ...
 - Convolutional codes widely used in practice
- Error detection (w/ retransmission) is used in the link layer and above for residual errors
- Also used in the application layer
 - With an erasure error model
 - E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington