Congestion window (KB or packets)

40

35

30

25

20

15

10

Slow Additive
_--=7 increase

Packet
loss

Fast
recovery

Multiplicative
decrease

Thresholdf———%=

2 congestjon window RO il

Transmission round (RTTs)

More TCP

+ Congestion avoidance

TCP timers Presentation

TCP lifeline

Application

Session
Network
Data Link
Physical

Congestion Control vs Avoidance

» TCP causes congestion as it probes for the available
bandwidth and then recovers from it after the fact
— Leads to loss, delay and bandwidth fluctuations
— We want congestion avoidance, not congestion control

» Congestion avoidance mechanisms

— Aim to detect incipient congestion, before loss. So monitor
queues to see that they absorb bursts, but not build steadily

TCP protocol uses some kind of
avoidance

Congestion avoidance phase
ssthresh N

» Avoid congestion by increasing linearly
» Can we do more?

Router Model: “FCFS with Tail Drop”

Arriving Next free Next to
packet buffer transmit

N\ NN
- | .

S

Free buffers Queued packets

Arriving Next to
packet transmit

N N
N -

Drop

The case against drop-tail queue management

FCFS
Scheduler,

e Large queues in routers is“a bad thing”

— Delay: end-to-end latency dominated by length of
queues at switches in network

 Allowing queues to overflow is “a bad thing”

— Fairness: connections transmitting at high rates can
starve connections transmitting at low rates

— PP\ P, P, P, P

—_

Random early packet drop (RED)

FCFS
Scheduler

When queue length exceeds threshold, drop packets
with queue length dependent probability

— probabilistic packet drop: flows see same loss rate

— problem: bursty traffic (burst arrives when queue is
near threshold) can be over penalized

— Pg|Ps| P, P3| Py | P

—_

Random early detection (RED) packet drop

Queue Drop
length probability
Max
queue length
Forced drop
Max
threshold Probabilistic
early drop
Min
threshold || No drop

Time
e Use exponential average of queue length to determine
when to drop

— avoid overly penalizing short-term bursts
— react to longer term trends

RED summary: why random drop?

e Provide gentle transition from no-drop to all-drop
— Provide “gentle” early warning
— Avoid synchronized loss bursts among sources
e Provide same loss rate to all sessions:

— With tail-drop, low-sending-rate sessions can be
completely starved

Explicit congestion notification
e Can we avoid congestion without loss?

e Can the routers signal the hosts (this is a bit off from
the end-to-end argument)

— Do not want to send additional packets.

Lretrans.10

Explicit Congestion Notification (ECN)

e ECN signals congestion with a bit in the IP header

e Receiver returns indication to the sender, who slows
— Need to signal this reliably or we risk instability

e Network-assisted congestion control

Deciding When to Retransmit

» How do you know when a packet has been lost?
— Ultimately sender uses timers to decide when to retransmit

» But how long should the timer be?
— Too long: inefficient (large delays, poor use of bandwidth)
— Too short: may retransmit unnecessarily (causing extra traffic)
— A good retransmission timer is important for good performance

» Right timer is based on the round trip time (RTT)
— Which varies greatly in the wide area. Why?

RTT variance in LANs versus Internet

03 T 03— T Tz
- 0.2 _ 021
01 01
0 0 IIO 2|(J B‘D 4IO 5‘0 0 0 1 l(] 2|D 3‘0 40 5‘0
Round-trip time (microseconds) Round-trip time (milliseconds)
LAN case — small, Internet case
regular RTT — large,
varied RTT

Congestion Collapse due to incorrect
RTT estimates

* In the limit, early retransmissions lead to congestion
collapse

— Sending more packets into the network when it is
overloaded exacerbates the problem of congestion

— Network stays busy but very little useful work is being
done

e This happened in real life ~1987

— Led to Van Jacobson’ s TCP algorithms, which form the
basis of congestion control in the Internet today

[See “Congestion Avoidance and Control”, SIGCOMM’ 88]

Estimating RTTs

¢ |dea: Adapt retransmission timer based on recent past
measurements

¢ Simple algorithm:
— For each packet, note time sent and time ack received

— Compute RTT samples and average recent samples for
timeout

— EstimatedRTT = o x EstimatedRTT + (1 - o) x SampleRTT

— This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically, oo = 0.8
to 0.9.

— Set timeout to small multiple (2) of the estimate

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

& sampleRTT
EstimatedRTT

1 8 5 22 20 3% 43 50 5 64 71 78 8 92 99 106
time (seconnds)

~S:time (seconds Transport Layer

Kurose and Ross

Karn/Partridge Algorithm

« Problem: RTT for retransmitted packets ambiguous

Sender Receiver Sender Receiver
rigi Origi
Nal tran e 9ingy f,anSm.

— S$Ion — /Ssjon

I I

[Retra,, mi o

Q SSJ, Q

£ Slon e[

& A

pCK

Solution: Don’ t measure RTT for retransmitted packets and do not
relax backed of timeout until valid RTT measurements

Jacobson/Karels Algorithm

¢ Problem:

— Variance in RTTs gets large as network gets loaded
— So an average RTT isn’ t a good predictor when we need it most

» Solution: Track variance too.

Difference = SampleRTT — EstimatedRTT
EstimatedRTT = EstimatedRTT + (8 x Difference)
Deviation = Deviation + §(|Difference|- Deviation)

Timeout = p x EstimatedRTT + ¢ x Deviation
— Inpractice,8=1/8,p=1and ¢ =4

Lretrans.18

So far we saw Loss-based TCP

e Evolution of loss-based TCP
— Tahoe
— Reno

— Selective Acknowledgment (explained in next
slide)

e Q: what if loss not due to congestion?

Selective ACKS

Extend ACKs with a vector to describe received
segments and hence losses
— Allows for more accurate retransmissions / recovery

(—Lost packets-\‘

& b ® [2

q d g d
ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK:6, 3-4

No way for us to know
that 2 and 5 were lost
with only ACKs

CNSE by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

10

Delay-based TCP Vegas

e Uses delay as a signal of congestion

— ldea: try to keep a small constant number of
packets at bottleneck queue

— Expected = W/BaseRTT
— Actual = W/CurRTT
— Diff = Expected - Actual
— Try to keep Diff small
e Delay-based TCP not widely used today

Wireless Issues

Wireless links lose packets due to transmission errors
— Do not want to confuse this loss with congestion
— Or connection will run slowly over wireless links!

One Strategy:

— Wireless links use ARQ, which masks errors

Transport with end-to-end congestion control (loss = congestion)

'/Wired link [F '/Wireless link

L O I

Sender Receiver
|

Link layer retransmission
(loss = transmission error)

CNSE by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

11

