Module 2.5
Bit Encoding and Errors

Ivayla Dermendjieva
iva@cs.washington.edu

Some material borrowed from slides by Jeremy Elson and Ben Greenstein. Thanks!
This Module's Topics

• Bit Encoding
 – NRZ
 – NRZI
 – Manchester
 – 4B/5B

• Error Detection
 – Parity
 – Internet Checksums
 – CRCs

• Error Correction
 – Hamming Distance
Bit Encoding

- Want to send messages, not just bits
- So break up bit stream into discrete chunks (frames)
- Synchronize both end points on frame boundaries – how?
 - Transmit clock on a separate channel – very expensive
 - Integrate clock in data stream
NRZ

• Simplest form of bit encoding
 • Signal is high to encode a '1'
 • Signal is low to encode a '0'

• What is a problem with this encoding?

NRZI

• NRZ has a problem: difficult to distinguish stream of consecutive 0's or 1's

• NRZI attempts to alleviate this
 • A signal change (i.e. high to low) encodes a '1'
 • No change in signal encodes a '0'

• This fixes the problem of sending consecutive 1's but not consecutive 0's

Manchester

- Signal Change on every bit
 - Low-to-high encodes a '0'
 - High-to-low encodes a '1'

- Manchester unambiguously integrates clock and data. What is the downside?

4B/5B

• So far, the schemes we have looked at have had shortcomings:
 • NRZ and NRZI run the risk of holding the signal steady when transmitting consecutive bits
 • Manchester reduces efficiency of link

• Want a scheme which toggles the signal often enough, without significant efficiency overhead

• 4B/5B encoding assigns a mapping between 4 bit data and 5-bit code words
 • There is a 5 bit code for each possible 4 bit sequence
 • Some 5 bit codes are invalid
<table>
<thead>
<tr>
<th>4-Bit Data Symbol</th>
<th>5-Bit Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11110</td>
</tr>
<tr>
<td>0001</td>
<td>01001</td>
</tr>
<tr>
<td>0010</td>
<td>10100</td>
</tr>
<tr>
<td>0011</td>
<td>10101</td>
</tr>
<tr>
<td>0100</td>
<td>01010</td>
</tr>
<tr>
<td>0101</td>
<td>01011</td>
</tr>
<tr>
<td>0110</td>
<td>01110</td>
</tr>
<tr>
<td>0111</td>
<td>01111</td>
</tr>
<tr>
<td>1000</td>
<td>10010</td>
</tr>
<tr>
<td>1001</td>
<td>10011</td>
</tr>
<tr>
<td>1010</td>
<td>10110</td>
</tr>
<tr>
<td>1011</td>
<td>10111</td>
</tr>
<tr>
<td>1100</td>
<td>11010</td>
</tr>
<tr>
<td>1101</td>
<td>11011</td>
</tr>
<tr>
<td>1110</td>
<td>11100</td>
</tr>
<tr>
<td>1111</td>
<td>11101</td>
</tr>
</tbody>
</table>

Table 2.4 4B/5B encoding.
Show the NRZ, Manchester and NRZI encodings for the above pattern. Assume NRZI signal starts out low.
Error Detection and Correction

• How can we know if the frames we received have not been corrupted in transit?

• Add additional information to frames
 • Sender computes some property of data and sends it along with the data
 • Receiver computes same property and compares

• Various methods for determining frame integrity
 • Parity
 • Internet Checksum
 • Cyclic Redundancy Check
Parity

• Start with n bits and add another bit so that the total number of '1's is even (even parity)
 • i.e. 0110010 \rightarrow 01100101
 • Easy to compute as XOR of all input bits

• Will detect an odd number of bit errors
 • But not an even number

• Does not correct any errors

• Overhead of parity is proportional to data length
 (i.e. 1 parity bit for every 32 bits of data)
2D Parity

- Add parity row/column to array of bits
- How many simultaneous bit errors can it detect?
- Which errors can it correct?
- What is an example of a 4-bit error that would not be detected by a two-dimensional parity?
Checksums

• Used in Internet Protocols (IP, ICMP, TCP, UDP)

• Basic Idea: Add up the data and send it along with sum

• Algorithm:
 • Add 16 bit chunks using 1s complement
 • Take ones complement of the result

• Fixed overhead, independent of length of data
Cyclic Redundancy Check (CRC)

• Stronger protection than checksums
 • Used widely in practice (i.e. Ethernet CRC-32)
 • Implemented in hardware (XORs and shifts)

• Fixed overhead (independent of data size)

• Algorithm: Given n bits of data, generate a k bit check sequence that gives a combined n + k bits that are divisible by a chosen divisor C(x)

• Based on mathematics of finite fields
 • “numbers” correspond to polynomials, use modulo arithmetic
 • i.e. interpret 10011010 as $x^7 + x^4 + x^3 + x^1$
CRC Example

- Extend message with k 0’s, when using a k-degree generator
- Divide message by generator (XOR)
- Discard result
- Subtract remainder from original message
- On reception, check that message is divisible by generator
CRC Example

Suppose we want to transmit the message 11001001 and protect it from errors using the CRC polynomial $x^3 + 1$. Determine the message that should be transmitted.
Hamming Distance

• Errors must not turn one valid codeword into another valid codeword, or we cannot detect/correct them.
• Hamming distance of a code is the smallest number of bit differences that turn any one codeword into another
 – e.g, code 000 for 0, 111 for 1, Hamming distance is 3
• For code with distance d+1:
 – d errors can be detected, e.g, 001, 010, 110, 101, 011
• For code with distance 2d+1:
 – d errors can be corrected, e.g., 001 → 000