Topic 2: Discovering MAC's from IP's

- Host has an IP (e.g., for the gateway). It needs a MAC address to send a frame to it.

- Solution: Address Resolution Protocol (ARP)

- Exploits the physical multicast of Ethernet
ARP: The IP->MAC Problem Solution

![Diagram of ARP process]

(As always, the actual protocol is richer than what is shown here.)

Topic 3: Network Address Translation (NAT)

- Turns out that there aren’t all that many 32-bit strings (i.e., IP addresses)
 - The world needs more...
 - An individual network needs more...
 - You need more...
 - Your ISP will give you only one (using DHCP), but you want to connect five machines to the Internet

- NAT exploits non-routable addresses to let you build your own private network "behind the NAT box"
 - Non-routable addresses are, well, never routed
 - Do not have to be globally unique (just locally unique)
 - 10.0.0.0 - 10.255.255.255
 - 172.16.0.0 - 172.31.255.255
 - 192.168.0.0 - 192.168.255.255

- The NAT box substitutes its own IP address for outgoing packets, and the local address of the actual destination for incoming packets

2/9/2009 CSE 461 06wi 3

2/9/2009 CSE 461 06wi 4
NAT: The Primary Goal

How can Amazon reply?

NAT Overview

- Recall that IP addresses are 32-bits (e.g., 192.168.10.3)
- Recall that TCP addresses are IP addresses plus a port number
Bonus Feature: NATs As Firewalls

Bonus Problem: NAT and Peer-to-Peer (P2P)

Wants to send along blue path. Ends up sending along red path.

It doesn't help to start the communication from this end.
STUN: Simple Traversal of UDP over NATs

- Heuristic designed to discover “routable” address (NAT entry) for hosts behind NATs
 *Updated by RFC 5389

Routing: Minimum Cost Spanning Tree

Let's interpret this as A’s view of its outgoing paths
(i.e., it's own routing table).
Each router has a routing table

Construct minimum cost spanning trees rooted at C, D, and F. What important property do they have?