
Bandwidth Allocation & TCP

• The Transport Layer 

• Focus

– How do we share bandwidth? Session

Presentation

Application

djw // CSE/EE 461, Winter 2003 L17.1

– How do we share bandwidth?

• Topics

– Congestion control & fairness

– TCP Additive Increase/Multiplicative Decrease

– TCP Slow Start

– TCP Fast Recovery

Physical

Data Link

Network

Transport

Session



Bandwidth Allocation 

• How fast should the Web server send packets?

• Two big issues to solve!

• Congestion

djw // CSE/EE 461, Winter 2003 L16.2

• Congestion

– sending too fast will cause packets to be lost in the network

• Fairness

– different users should get their fair share of the bandwidth

• Often treated together (e.g. TCP) but needn’t be



Destination
1.5-Mbps T1 link

Router

Congestion

Chapter 6, Figure 1djw // CSE/EE 461, Winter 2003

• Buffer intended to absorb bursts when input rate > output

• But if sending rate is persistently > drain rate, queue builds

• Dropped packets represent wasted work; goodput < throughput

Source
2

Packets dropped here



Router

Source

Source
1

Router

Destination
1

Fairness

Chapter 6, Figure 2djw // CSE/EE 461, Winter 2003

Source
2

Source
3

Router

Router

Destination
2

• Each flow from a source to a destination should get an equal share of the 
bottleneck link … depends on paths and other traffic



Bandwidth Allocation Approaches

• Open versus Closed loop

– Open: reserve allowed traffic with network; avoid congestion

– Closed: use network feedback to adjust sending rate

• Host-based versus Network support

djw // CSE/EE 461, Winter 2003 L16.5

• Host-based versus Network support

– Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based

– How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation

– TCP is a host-driven, window-based, closed loop mechanism



Design Choices

• TCP/Internet provides “best-effort” service

– Implicit network feedback, host controls via window.

– No strong notions of fairness

• A network in which there are QOS (quality of service) guarantees

djw // CSE/EE 461, Winter 2003 L16.6

• A network in which there are QOS (quality of service) guarantees

– Rate-based reservations natural choice for some apps

– But reservations are need a good characterization of traffic

– Network involvement typically needed to provide a guarantee

• Former tends to be simpler to build, latter offers greater service to 

applications but is more complex.



TCP Before Congestion Control

• Just use a fixed size sliding window!

– Will under-utilize the network or cause unnecessary loss

• Congestion control dynamically varies the size of the window 

djw // CSE/EE 461, Winter 2003 L17.7

• Congestion control dynamically varies the size of the window 

to match sending and available bandwidth

– Sliding window uses minimum of cwnd, the congestion window, and 

the advertised flow control window

• The big question: how do we decide what size the window 

should be?



TCP Probes the Network

Sink
45 Mbps T3 link

Router
100 Mbps Ethernet

djw // CSE/EE 461, Winter 2003 L17.8

• Each source independently probes the network to determine 

how much bandwidth is available

– Changes over time, since everyone does this

• Assume that packet loss implies congestion

– Since errors are rare; also, requires no support from routers

Sink
45 Mbps T3 link

Router
100 Mbps Ethernet



TCP is “Self-Clocking”

Sink
45 Mbps T3 linkRouter100 Mbps Ethernet

djw // CSE/EE 461, Winter 2003 L17.9

• Neat observation: acks pace transmissions at approximately 

the botteneck rate

• So just be sending packets we can discern the “right” sending 

rate (called the packet-pair technique)



AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we 

believe there is bandwidth

Source Destination

djw // CSE/EE 461, Winter 2003 L17.10

believe there is bandwidth

– Additive increase per RTT

– Cwnd += 1 packet / RTT

• Decrease quickly when there is 

loss (went too far!)

– Multiplicative decrease

– Cwnd /= 2
1



TCP Sawtooth Pattern

60

C
w

n
d
 (

K
B

)

70

30

40

50

djw // CSE/EE 461, Winter 2003 L17.11

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d
 (

K
B

)

T ime (seconds)

30

10

10.0



“Slow Start”

• Q: What is the ideal value of 

cwnd? How long will AIMD take 

to get there?

Source Destination

djw // CSE/EE 461, Winter 2003 L17.12

• Use a different strategy to get 

close to ideal value

– Double cwnd every RTT

– Cwnd *= 2 / RTT

– Cwnd +=1 / packet received

1



Combining Slow Start and AIMD

ssthresh

djw // CSE/EE 461, Winter 2003 L17.13

• Slow start is used whenever the connection is not running with 
packets: initially, and after timeouts

• But we don’t want to overshoot our ideal cwnd, so remember 
the last cwnd that worked with no loss

– Ssthresh = cwnd after cwnd /= 2 on loss

– Switch to AIMD once cwnd passes ssthresh



Example (Slow Start +AIMD)

60

K
B

70

40

50

djw // CSE/EE 461, Winter 2003 L17.14

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

30

40

10



Fast Retransmit

• TCP uses cumulative acks, 

so duplicate acks start 

arriving after a packet is 

lost.

Packet 1

Packet 2

Packet 3

Packet 4

ACK 1

ACK 2

Sender Receiver

djw // CSE/EE 461, Winter 2003 L17.15

• We can use this fact to infer 

which packet was lost, 

instead of waiting for a 

timeout.

• 3 duplicate acks are used in 

practice

Packet 5

Packet 6

Retransmit

packet 3

ACK 2

ACK 2

ACK 6

ACK 2



Example (with Fast Retransmit)

60

K
B

70

40

50

djw // CSE/EE 461, Winter 2003 L17.16

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

Time (seconds)

30

40

10



Fast Recovery

• After Fast Retransmit, use further duplicate acks to grow 

cwnd and clock out new packets, since these acks represent 

packets that have left the network.

djw // CSE/EE 461, Winter 2003 L17.17

• End result: Can achieve AIMD when there are single packet 

losses. Only slow start the first time.



Example (with Fast Recovery)

60

C
w

n
d
 (

K
B

)

70

30

40

50

djw // CSE/EE 461, Winter 2003 L17.18

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d
 (

K
B

)

T ime (seconds)

30

10

10.0


