
#### Naming and the DNS

- Focus
  - How do we <u>name hosts</u> etc.?
- Topics
  - Domain Name System (DNS)
  - Email/URLs

| Application  |
|--------------|
| Presentation |
| Session      |
| Transport    |
| Network      |
| Data Link    |
| Physical     |

#### **Names and Addresses**



- <u>Names</u> are identifiers for objects/services (high level)
- <u>Addresses</u> are locators for objects/services (low level)
- <u>Resolution</u> is the process of mapping name to address
- But, addresses are really lower-level names; many levels used

#### **Naming in Systems**

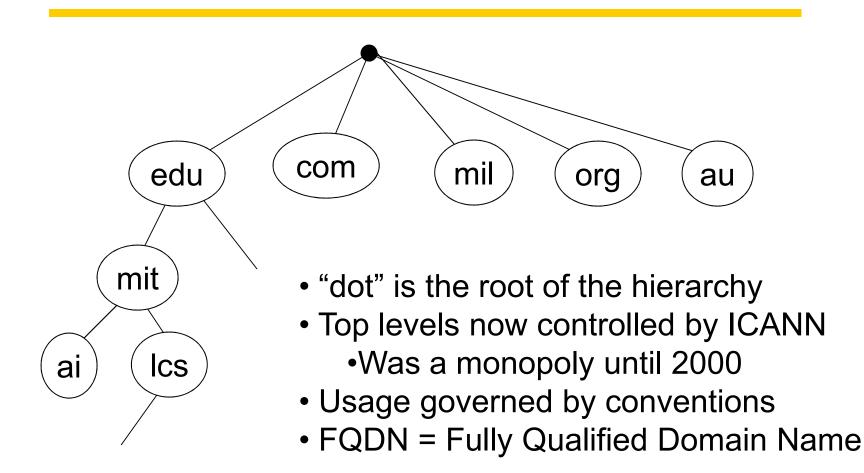
- Ubiquitous
  - Files in filesystem, processes in OS, pages on the web, ...
- Decouple identifier for object/service from location
  - Hostnames provide a level of indirection for IP addresses
- Naming greatly impacts system capabilities and performance
  - Ethernet addresses are a flat 48 bits
    - flat  $\rightarrow$  any address anywhere but large forwarding tables
  - IP addresses are hierarchical 32/128 bits
    - hierarchy  $\rightarrow$  smaller routing tables but constrained locations

#### **Internet Hostnames**

- Hostnames are human-readable identifiers for end-systems based on an administrative hierarchy
  - galah.cs.washington.edu is my desktop machine
- IP addresses are a fixed-length binary encoding for endsystems based on their position in the network
  - 128.95.2.106 is galah's IP address
- Original name resolution: HOSTS.TXT
- Current name resolution: Domain Name System
- Future name resolution: ?

#### **Original Hostname System**

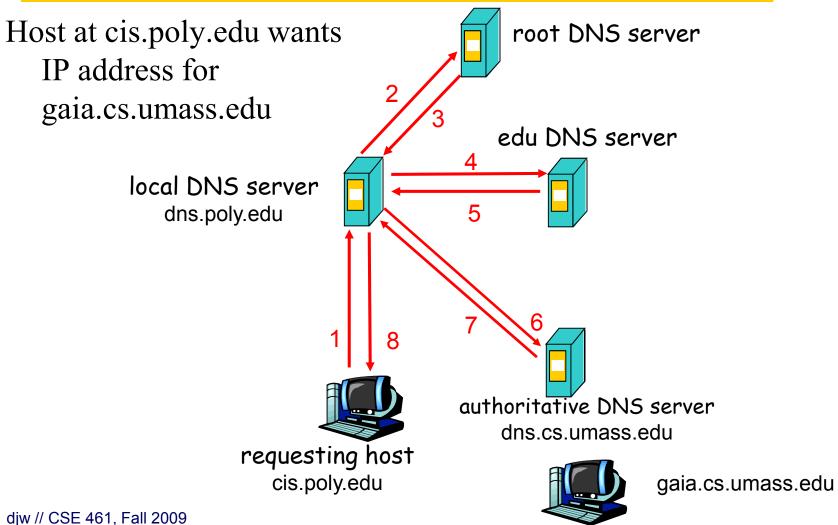
- When the Internet was really young ...
- Flat namespace
  - Simple (host, address) pairs
- Centralized management
  - Updates via a single master file called HOSTS.TXT
  - Manually coordinated by the Network Information Center (NIC)
- Resolution process
  - Look up hostname in the HOSTS.TXT file


### **Scaling Problems**

- Coordination
  - Between all users to avoid conflicts
- Inconsistencies
  - Between update and distribution of new version
- Reliability
  - Single point of failure
- Performance
  - Competition for centralized resources

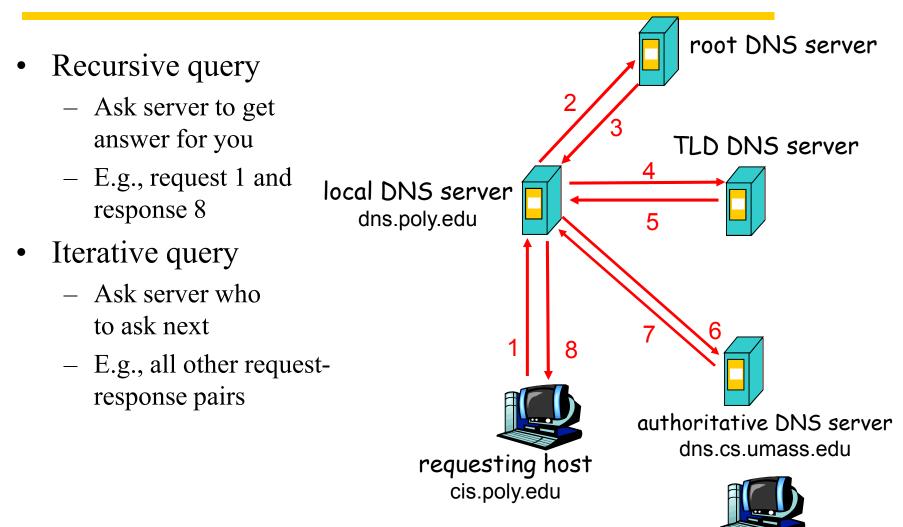
## **Domain Name System (DNS)**

- Designed by Mockapetris and Dunlap in the mid 80s
- Namespace is hierarchical
  - Allows much better scaling of data structures
  - e.g., galah.cs.washington.edu
- Namespace is distributed
  - Decentralized administration and access
  - e.g., galah managed by CSE
- Resolution is by query/response
  - With replicated servers for redundancy
  - With heavy use of caching for performance


#### **DNS Hierarchy**



#### **DNS Distribution**


- Data managed by <u>zones</u> that contain <u>resource records</u>
  - Zone is a complete description of a portion of the namespace
  - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
- One or more <u>nameservers</u> manage each zone
  - Zone transfers performed between nameservers for consistency
  - Multiple nameservers provide redundancy
- Client <u>resolvers</u> query nameservers for specified records
  - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

## **DNS Lookups / Resolution**



10

#### **Recursive vs. Iterative Queries**



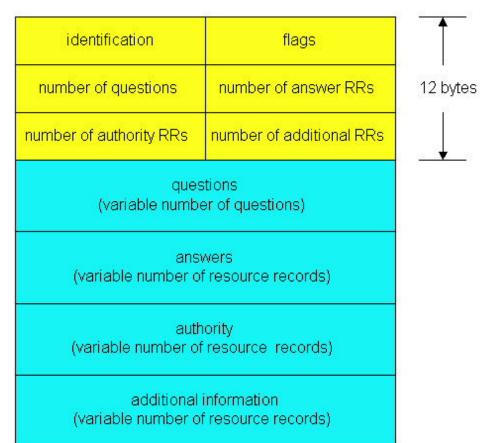
#### **DNS Resource Records**

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
  - name is hostname
  - value is IP address
- Type=NS
  - name is domain (e.g. foo.com)
  - value is hostname of authoritative .
    name server for this domain

- Type=CNAME
  - name is alias name for some "canonical" (the real) name www.ibm.com is really servereast.backup2.ibm.com
  - value is canonical name
- Type=MX
  - value is name of mailserver associated with name


## **DNS Protocol**

#### DNS protocol : query and reply messages, both with same

message format

#### Message header

- Identification: 16 bit # for query, reply to query uses same #
- Flags:
  - Query or reply
  - Recursion desired
  - Recursion available
  - Reply is authoritative



## Reliability

- DNS servers are replicated
  - Name service available if at least one replica is up
  - Queries can be load balanced between replicas
- UDP used for queries
  - Need reliability: must implement this on top of UDP
- Try alternate servers on timeout
  - Exponential backoff when retrying same server
- Same identifier for all queries
  - Don't care which server responds

# **DNS Bootstrapping**

- Need to know IP addresses of root servers before we can make any queries
- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)



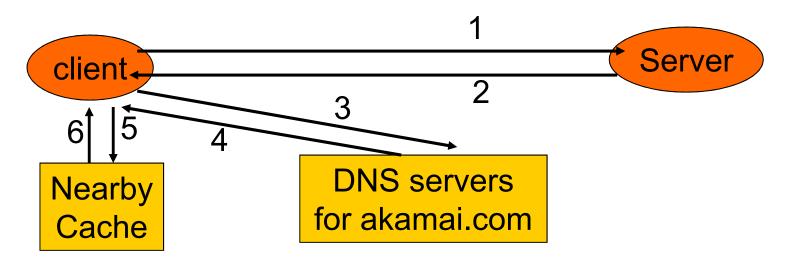
# **DNS** Caching

- Performing all these queries take time
  - And all this before the actual communication takes place
  - E.g., 1-second latency before starting Web download
- Caching can substantially reduce overhead
  - The top-level servers very rarely change
  - Popular sites (e.g., www.cnn.com) visited often
  - Local DNS server often has the information cached
- How DNS caching works
  - DNS servers cache responses to queries
  - Responses include a "time to live" (TTL) field
  - Server deletes the cached entry after TTL expires

#### **Negative Caching**

- Remember things that don't work
  - Misspellings like <u>www.cnn.comm</u> and <u>www.cnnn.com</u>
  - These can take a long time to fail the first time
  - Good to remember that they don't work
  - ... so the failure takes less time the next time around

## **Building on the DNS**


- Other naming designs leverage the DNS
- Email:
  - e.g., <u>djw@cs.washington.edu</u> is djw in the domain cs.washington.edu
- Uniform Resource Locators (URLs) name for Web pages
  - e.g., <u>www.cs.washington.edu/homes/djw</u>
  - Use domain name to identify a Web server
  - Use "/" separated string to name path to page (like files)

#### **Future Evolution of the DNS**

- Design constrains us in two major ways that are increasingly less appropriate
- Static host to IP mapping
  - What about mobility (Mobile IP) and dynamic address assignment (DHCP)
- Location-insensitive queries
  - What if I don't care what server a Web page comes from, as long as it's the right page?
  - e.g., a yahoo page might be replicated

#### Akamai

• Use the DNS to effect selection of a nearby Web cache



- Leverage separation of static/dynamic content
- Beware DNS caching