
Network Security I

• Focus

– How do we secure network systems?

• Topics Session

Presentation

Application

djw // CSE 461, Fall 2009

• Topics

– Privacy, integrity, authenticity, timeliness

– Cryptography

Physical

Data Link

Network

Transport

Session

lcrypto.1

Preliminaries: End-Host Security

• Traditional security concepts:

– Integrity

• My files shouldn’t be modifiable by an unauthorized user

– Privacy

• My files shouldn’t be readable by an unauthorized user

djw // CSE 461, Fall 2009

• My files shouldn’t be readable by an unauthorized user

• Traditional security mechanisms:

– Authentication

• Who are you?

– Authorization

• What are you allowed to do?

lcrypto.2

Preliminaries (cont.)

• “Trusted computing base”

– Components of the system that you believe are respecting the security policy but that are
not verified as doing so

• The user trusts the operating system

– E.g., won’t leak your files to unauthorized users, won’t spuriously delete/modify them

• User trusts applications

djw // CSE 461, Fall 2009

• User trusts applications

– Emacs isn’t mailing your file to its authors

• User trusts the hardware

– Is your keyboard trustworthy?

– Is an ATM trustworthy?

• Does the OS trust users?

– Mandatory access control

lcrypto.3

Preliminaries: Network Security

• Most of the technologies in lower protocol layers were developed pre-
Internet

• Pre-Internet:

– There weren’t many network services (telnet, mail, ftp, a few others)

djw // CSE 461, Fall 2009

– There weren’t many machines on networks

• Many local networks, but not very interconnected

– “End-to-end security” made sense

• Trusted OSes running trusted applications run by trusted users
– At the very least, you could probably track down a malicious user

• Result: no security mechanisms were built into protocols themselves

– E.g., mail spoofing was trivial

lcrypto.4

Preliminaries: Post-Internet

• Really an entirely new situation

– Servers want “anonymous” users

– Users want to talk with unverified servers

– Users want to run unverified code

djw // CSE 461, Fall 2009

• Possible approaches:

– Verification of identity + trust

• X.509 certificates

– Enforcement

• Java security model

lcrypto.5

Network Security

• What properties would we like the network to offer?

– Privacy: messages can’t be eavesdropped

– Integrity: messages can’t be tampered with

– Authenticity: we can verify who created the message

– Timeliness: we can verify that the packet was sent not too long ago

djw // CSE 461, Fall 2009

– Availability: I can send and receive the packets I want

– Non-repudiation: you can’t claim you didn’t say something you did

– Anonymity: not only can’t you tell what the content of my conversation is, you
can’t even tell who I’m talking with

• There are other properties we would like from the distributed services that
run on top, as well

– E.g., if I send you my medical records, you can’t send them to anyone else

lcrypto.6

Achieving Security

• It’s not about making security violations impossible, it’s about making them too
expensive to be worth it to the attacker

– Example: There’s a simple method to break passwords: try them all

• Security is a negative goal

– Proof that something can’t be done within some cost model is often followed by

djw // CSE 461, Fall 2009

– Proof that something can’t be done within some cost model is often followed by
demonstration that it can be done by stepping outside the model

• Example: dictionary attacks
(Goal isn’t “break into account gwb,” it’s “break into any account”)

• There is a long-standing debate about the roles of prevention and retaliation

– Steel plates over your doors and windows or deadbolts and the legal system?

• To publish or not to publish?
– “Security through obscurity”

lcrypto.7

Attack / Threat Models

Alice Bob

djw // CSE 461, Fall 2009

• eavesdropper

• man-in-the-middle

• replay attack

• spoof

• phishing

• 1

M15.8

Part I: Privacy/Secrecy

• Main goal: prevent an eavesdropper from understanding what

is being sent

djw // CSE 461, Fall 2009 lcrypto.9

Basic Tool: Cryptography

• Cryptography (encryption) directly addresses the

eavesdropper problem

• It turns out it can also be used to address some of the other

djw // CSE 461, Fall 2009

• It turns out it can also be used to address some of the other

problems

– E.g., authenticity

• Encryption is a building block

– A security protocol is needed to achieve some more complex goal

lcrypto.10

Basic Encryption for Privacy

Sender

Plaintext (M)

Encrypt Ciphertext (C)

Receiver

Plaintext (M)

Decrypt

djw // CSE 461, Fall 2009

• Cryptographer chooses functions E, D and keys KE, KD

– Mathematical basis

• Cryptanalyst try to “break” the system

– Depends on what is known: E and D, M and C?

Encrypt

E(M,KE)

Decrypt

D(C, KD)

lcrypto.11

Perfect Secrecy: One Time Pad

• Messages

– n-bit strings [b1,…,bn]

• Keys

– Random n-bit strings [k1,…,kn]

• Encryption/Decryption• Encryption/Decryption

– c = E(b, k) = b � k = [b1 � k1, …, bn � kn]

• � denotes exclusive or

– b = D(b, k) = c � k = b � k � k = b � [0, …, 0] = b

• Properties

– Provably unbreakable if used properly

– Keys must be truly random

– must not be used too often

– Key same size as message

djw // CSE 461, Fall 2009 lcrypto.12

Simple Permutation Cipher

• Messages

– n-bit strings [b1,…,bn]

• Keys

– Permutation � of n

– Let � = �-1– Let � = �-1

• Encryption/Decryption

– E([b1,…,bn], �) = [b � (1),…,b � (n)]

– D([b1,…,bn], �) = [b � (1),…,b � (n)]

• Properties

– Cryptanalysis possible

djw // CSE 461, Fall 2009 lcrypto.13

Secret Key Functions (DES, IDEA)

Plaintext

Encrypt with

secret key

Ciphertext

Plaintext

Decrypt with

secret key

djw // CSE 461, Fall 2009

• Also called “shared secret”

• Single key (symmetric) is shared between parties
– Used both for encryption and decryption

• Pro’s:
– Fast; hard to break given just ciphertext

• Con’s:
– key distribution problem

• Suppose you want to create an account at youTube.com?

• The key distribution problem is crippling
- Every client must share a (distinct!) secret with every server

Ciphertext

lcrypto.14

Data Encryption Standard (DES)

• History
– Developed by IBM, 1975
– Modified slightly by NSA
– U.S. Government (NIST) standard, 1977

• Algorithm
– Uses 64-bit key, really 56 bits plus 8 parity bits– Uses 64-bit key, really 56 bits plus 8 parity bits
– 16 “rounds”

• 56-bit key used to generate 16 48-bit keys

• Each round does substitution and permutation using 8 S-boxes

• Strength
– Difficult to analyze
– Cryptanalysis believed to be exponentially difficult in number of rounds
– No currently known attacks easier than brute force
– But brute force is now (relatively) easy

djw // CSE 461, Fall 2009 lcrypto.15

Other Ciphers

• Triple-DES
– DES three times

• mc = E(D(E(mp, k1), k2, k3)

– Effectively 112 bits
– Three times as slow as DES

• Blowfish• Blowfish
– Developed by Bruce Schneier circa 1993
– Variable key size from 32 to 448 bits
– Very fast on large general purpose CPUs (modern PCs)
– Not very easy to implement in small hardware

• Advanced Encryption Standard (AES)
– Selected by NIST as replacement for DES in 2001
– Uses the Rijndael algorithm
– Keys of 128, 192 or 256 bits

djw // CSE 461, Fall 2009 lcrypto.16

Encrypting Large Messages

• The basic algorithms encrypt a fixed size block

• Obvious solution is to encrypt a block at a time. This is
called Electronic Code Book (ECB)

– Leaks data: repeated plaintext blocks yield repeated – Leaks data: repeated plaintext blocks yield repeated
ciphertext blocks

– Does not guarantee integrity!

• Other modes “chain” to avoid this (CBC, CFB, OFB)

djw // CSE 461, Fall 2009 lcrypto.17

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E

djw // CSE 461, Fall 2009 M15.18

CBC Decryption

IV C1 C2 C3 C4

D D D D

IV M1 M2 M3 M4

D D D D

djw // CSE 461, Fall 2009 M15.19

Public Key Functions (RSA)

Plaintext

Encrypt with

public key

Plaintext

Decrypt with

private key

djw // CSE 461, Fall 2009

• Public key can be published; private is a secret

– Still have a key distribution problem, though…

public key

Ciphertext

private key

lcrypto.20

RSA scheme

• Choose primes p and q, and let n = pq

• Find e and d such that ed mod (p-1)(q-1) = 1

– Nits: e < (p-1)(q-1) and coprime with it.

• Public key is (n, e), private key is (n, d)

• To encrypt: c = m^e mod n

• To decrypt: m = c^d mod n

• This works because:

– c^d mod n = m^ed mod n = m mod n by Euler’s theorem

• Best approach to compute m w/o d is to factor n

• Had enough?

djw // CSE 461, Fall 2009 lcrypto.21

Properties of Public Key
Encryption

• Let K1 be the private key, and K* be the public key

• D(E(M,K*), K1) = M = D(E(M,K1), K*)

djw // CSE 461, Fall 2009

• Implications

– Anonymous client can send private message to server knowing only K*

– Server can prove authenticity by encrypting with K1

lcrypto.22

Improving performance

• Public key crypto is sloooow compared to secret key:

– MD5: 600 Mbps, DES: 100 Mbps, RSA: 0.1 Mbps (from P&D)

• But public key is more convenient & secure in setting up keys

• We can combine them to get the best of both• We can combine them to get the best of both

• Hybrid encryption: encrypt message with random secret key and

encrypt secret key with public key.

djw // CSE 461, Fall 2009 lcrypto.23

Part II: Integrity & Authenticity

• Main goal: verify that a message has not been altered and that

it comes from who it claims

• Message Authentication Code (MAC) allows verifiers (who

djw // CSE 461, Fall 2009

• Message Authentication Code (MAC) allows verifiers (who

hold the secret key) to detect changes to content.

– Sometimes called a MIC, I = Integrity

• Digital signatures allow recipients to verify message integrity

and authenticity

• Q: why isn’t encryption enough?

lcrypto.24

Secret Key Integrity

Generate

MAC

Verify

MAC
MAC

Plaintext

Yes/No
MAC MAC

MAC Yes/No

Key Key

E.g.: Use DES in CBC-MAC mode (with IV of 0)

and the residue (last encryption) is the MAC

Need to use a different key than for secrecy!

RSA Digital Signature

Plaintext

Encrypt with

PRIVATE key

Plaintext

Decrypt with

PUBLIC key

djw // CSE/EE 461, Winter 2003 L23.26

• Notice that we reversed the role of the keys (and the math just

works out) so only one party can send the message but anyone

can check it’s authenticity

PRIVATE key

Ciphertext

PUBLIC key

A Faster “RSA Signature”

• Encryption can be expensive, e.g., RSA 1Kbps

• To speed up, let’s sign just the checksum instead!

– Check that the encrypted bit is a signature of the checksum

• Problem: Easy to alter data without altering checksum

djw // CSE/EE 461, Winter 2003 L23.27

• Problem: Easy to alter data without altering checksum

• Answer: Cryptographically strong “checksums”

Cryptographic Hash

• Basically:

– A hash function (maps arbitrary sized data to a fixed number of bits)

– Given message M, is cheap to compute

– Give a hash value, it’s hard to find data that produces that value

djw // CSE 461, Fall 2009

• Ideally, a change to any one bit of the message flips each bit of the

hash value with probability 0.5

• Result:

– Even if the attacker knows the authenticator value, can’t produce

bogus data that matches it

lcrypto.28

Message Digests (MD5, SHA)

• Act as a cryptographic checksum or hash

– Typically small compared to message (MD5 128 bits)

– “One-way”: infeasible to find two messages with same digest

Message (padded)

djw // CSE 461, Fall 2009

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

1

1

Transform

lcrypto.29

Public Key Integrity Protection

Plaintext

Generate

Signature

Verify

Signature
Signature Yes/No

Private Key
(of sender)

Public Key

Keyed Hash MAC (HMAC)

• Start with HMAC = H(K,m), but it’s vulnerable.

• From RFC 2104:

• HMAC(K,m) = H((K⊕ opad) ∥ H((K⊕ ipad) ∥ m))

⊕

• HMAC(K,m) = H((K⊕ opad) ∥ H((K⊕ ipad) ∥ m))

– ⊕ is XOR, opad = 0x5c5c5c…, ipad = 0x363636 ...

djw // CSE 461, Fall 2009 lcrypto.31

Part III: Authentication

• Main goal: Verify that you are talking to who you think you

are talking to.

djw // CSE 461, Fall 2009 lcrypto.32

Private Key Authentication

• Alice wants to talk to Bob

– Needs to convince him of her identity

– Both have private key k

• Naive scheme• Naive scheme

Alice Bob

• Vulnerability?

“I am Alice”, x, E(x, k)

Preventing Replay Attacks

• Bob can issue a challenge phrase to Alice

“I am Alice”

Alice Bob

E(x, k)

x

Authentication w/ Shared Secret

• Three-way handshake for mutual authentication

– Client and server share secrets, e.g., login password

Client Server

ClientId, E(
x and y are nonces, values used

djw // CSE 461, Fall 2009

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates

server here

Server authenticates

client here

Session key

exchanged

x and y are nonces, values used

only once, to avoid replay attacks.

lcrypto.35

Public Key Authentication

djw // CSE 461, Fall 2009 M15.36

Public Key ���� Session Key

• Ask other side to decrypt/sign to prove they hold the keys and

use public keys to establish (shared) session key

client serverclient ID, x

((K,y,x+1)^C-public)^S-priv

client serverclient ID, x

(y+1)^K

client

authenticates

server server

authenticates

client

Part IV: Key Distribution

• These keys need to come from somewhere … Achilles heel

• In a large network, we’re going to need to trust someone to

either

djw // CSE 461, Fall 2009

either

– 1) establish new shared secrets (session keys), or

– 2) vouch for public keys.

lcrypto.38

Kerberos

• Have network with n entities

• Add one more

– Must generate n new keys

– Each other entity must securely get its new key

– Big headache managing n2 keys!– Big headache managing n2 keys!

• Kerberos solution: use a central keyserver

– Needs n secret keys between entities and keyserver

– Generates session keys as needed

– Downsides

• Only scales to single organization level

• Single point of failure

Kerberos as Trusted Third Party

djw // CSE 461, Fall 2009 M15.40

Diffie-Hellman Key Agreement

• History

– Developed by Whitfield Diffie, Martin Hellman

– Published in 1976 paper “New Directions in Cryptography”

• Allows negotiation of secret key over insecure network

• Algorithm• Algorithm

– Public parameters

• Prime p

• Generator g < p with property: �n: 1�n�p-1, �k: n = gk mod p

– Alice chooses random secret a, sends Bob ga

– Bob chooses random secret b, sends Alice gb

– Alice computes (gb)a, Bob computes (ga)b – this is the key

– Difficult for eavesdropper Eve to compute gab

Diffie-Hellman Key Exchange

• Problem: agree on a session key with no prior information

exchanged

djw // CSE 461, Fall 2009 lcrypto.42

Diffie-Hellman Weakness

• Man-in-the-Middle attack

– Assume Eve can intercept and modify packets

– Eve intercepts ga and gb, then sends Alice and Bob gc

– Now Alice uses gac, Bob uses gbc, and Eve knows both

• Defense requires mutual authentication

– Back to key distribution problem

Public Key Authentication Chains

• How do you trust an unknown entity?

• Trust hierarchies (“CA says public key for X is K”)

– Certificates issued by Certificate Authorities (CAs)
• Certificates are signed by only one CA

• Trees are usually shallow and broad

• Clients only need a small number of root CAs• Clients only need a small number of root CAs

– Roots don’t change frequently

– Can be distributed with OS, browser

• Problem

– Root CAs have a lot of power

– Initial distribution of root CA certificates

– X.509
• Certificate format standard

• Global namespace: Distinguished Names (DNs)

– Not very tightly specified – usually includes an email address or domain
name

X.509 Certificates

djw // CSE 461, Fall 2009 M15.45

Public Key Revocation

• What if a private key is compromised?

– Hope it never happens?

• Need certificate revocation list (CRL)

– and a CRL authority for serving the list– and a CRL authority for serving the list

– everyone using a certificate is responsible for checking to see if it is on
CRL

– ex: certificate can have two timestamps

• one long term, when certificate times out

• one short term, when CRL must be checked

• CRL is online, CA can be offline

